Abstract

A precision reflectance characterization facility, constructed specifically for the measurement of the bidirectional reflectance properties of Spectralon panels planned for use as in-flight calibrators on the NASA Multiangle Imaging Spectroradiometer (MISR) instrument is described. The incident linearly polarized radiation is provided at three laser wavelengths: 442, 632.8, and 859.9 nm. Each beam is collimated when incident on the Spectralon. The illuminated area of the panel is viewed with a silicon photodetector that revolves around the panel (360°) on a 30-cm boom extending from a common rotational axis. The reflected radiance detector signal is ratioed with the signal from a reference detector to minimize the effect of amplitude instabilities in the laser sources. This and other measures adopted to reduce noise have resulted in a bidirectional reflection function (BRF) calibration facility with a measurement precision with regard to a BRF measurement of ±0.002 at the 1σ confidence level. The Spectralon test piece panel is held in a computer-controlled three-axis rotational assembly capable of a full 360° rotation in the horizontal plane and 90° in the vertical. The angular positioning system has repeatability and resolution of 0.001°. Design details and an outline of the measurement methodology are presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
    [CrossRef]
  2. V. R. Weidner, J. J. Hsia, B. Adams, “Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standard,” Appl. Opt. 24, 2225–2230 (1985).
    [CrossRef] [PubMed]
  3. C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
    [CrossRef]
  4. F. O. Bartell, E. L. Dereniak, W. L. Wolfe, “The theory and measurement of bi-directional distribution function (BRDF) and bi-directional transmittance distribution function (BTDF),” in Radiation Scattering in Optical Systems, G. H. Hunt, ed., Proc. SPIE257, 154–160 (1980).
  5. B. L. Drolen, “Bi-directional reflectance and surface specularity results for a variety of spacecraft thermal control materials,” in Proceedings of the 26th AIAA Thermophysics Conference (American Institute of Aeronautics and Astronautics, Inc., 555 West 57th Street, New York, New York 10019).
  6. X. Feng, J. R. Schott, T. Gallagher, “Comparison of methods for generation of absolute reflectance-factor values for bidirectional reflectance distribution function studies,” Appl. Opt. 32, 1234–1242 (1993).
    [CrossRef] [PubMed]
  7. B. T. McGuckin, D. A. Haner, R. T. Menzies, “Multi-angle Imaging SpectroRadiometer (MISR): optical characterization of the on-board Spectralon calibration panels,” to be published in Applied Optics.
  8. M. Franc¸on, Laser Speckle and Applications in Optics (Academic, New York, 1979).
  9. J. C. Dainty, ed., “Laser speckle and related phenomena,” in Vol. 8 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984).
  10. J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1977), Vol. 14, pp. 1–44.
    [CrossRef]

1993 (3)

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

X. Feng, J. R. Schott, T. Gallagher, “Comparison of methods for generation of absolute reflectance-factor values for bidirectional reflectance distribution function studies,” Appl. Opt. 32, 1234–1242 (1993).
[CrossRef] [PubMed]

1985 (1)

Adams, B.

Bartell, F. O.

F. O. Bartell, E. L. Dereniak, W. L. Wolfe, “The theory and measurement of bi-directional distribution function (BRDF) and bi-directional transmittance distribution function (BTDF),” in Radiation Scattering in Optical Systems, G. H. Hunt, ed., Proc. SPIE257, 154–160 (1980).

Bruegge, C. J.

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

Chrien, N. L.

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

Dainty, J. C.

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1977), Vol. 14, pp. 1–44.
[CrossRef]

Dereniak, E. L.

F. O. Bartell, E. L. Dereniak, W. L. Wolfe, “The theory and measurement of bi-directional distribution function (BRDF) and bi-directional transmittance distribution function (BTDF),” in Radiation Scattering in Optical Systems, G. H. Hunt, ed., Proc. SPIE257, 154–160 (1980).

Diner, D. J.

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

Drolen, B. L.

B. L. Drolen, “Bi-directional reflectance and surface specularity results for a variety of spacecraft thermal control materials,” in Proceedings of the 26th AIAA Thermophysics Conference (American Institute of Aeronautics and Astronautics, Inc., 555 West 57th Street, New York, New York 10019).

Duval, V.

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

Feng, X.

Franc¸on, M.

M. Franc¸on, Laser Speckle and Applications in Optics (Academic, New York, 1979).

Gallagher, T.

Haner, D. A.

B. T. McGuckin, D. A. Haner, R. T. Menzies, “Multi-angle Imaging SpectroRadiometer (MISR): optical characterization of the on-board Spectralon calibration panels,” to be published in Applied Optics.

Hsia, J. J.

McGuckin, B. T.

B. T. McGuckin, D. A. Haner, R. T. Menzies, “Multi-angle Imaging SpectroRadiometer (MISR): optical characterization of the on-board Spectralon calibration panels,” to be published in Applied Optics.

Menzies, R. T.

B. T. McGuckin, D. A. Haner, R. T. Menzies, “Multi-angle Imaging SpectroRadiometer (MISR): optical characterization of the on-board Spectralon calibration panels,” to be published in Applied Optics.

Rainen, R. A.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

Schott, J. R.

Springstein, A. W.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

Stiegman, A. E.

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

Weidner, V. R.

Wolfe, W. L.

F. O. Bartell, E. L. Dereniak, W. L. Wolfe, “The theory and measurement of bi-directional distribution function (BRDF) and bi-directional transmittance distribution function (BTDF),” in Radiation Scattering in Optical Systems, G. H. Hunt, ed., Proc. SPIE257, 154–160 (1980).

Appl. Opt. (2)

Metrologia. (1)

C. J. Bruegge, V. Duval, N. L. Chrien, D. J. Diner, “Calibration plans for the Multi-angle Imaging SpectroRadiometer (MISR),” Metrologia. 30, 213–221 (1993).
[CrossRef]

Opt. Eng. (1)

C. J. Bruegge, A. E. Stiegman, R. A. Rainen, A. W. Springstein, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth orbiting sensors,” Opt. Eng. 32, 805–814 (1993).
[CrossRef]

Other (6)

F. O. Bartell, E. L. Dereniak, W. L. Wolfe, “The theory and measurement of bi-directional distribution function (BRDF) and bi-directional transmittance distribution function (BTDF),” in Radiation Scattering in Optical Systems, G. H. Hunt, ed., Proc. SPIE257, 154–160 (1980).

B. L. Drolen, “Bi-directional reflectance and surface specularity results for a variety of spacecraft thermal control materials,” in Proceedings of the 26th AIAA Thermophysics Conference (American Institute of Aeronautics and Astronautics, Inc., 555 West 57th Street, New York, New York 10019).

B. T. McGuckin, D. A. Haner, R. T. Menzies, “Multi-angle Imaging SpectroRadiometer (MISR): optical characterization of the on-board Spectralon calibration panels,” to be published in Applied Optics.

M. Franc¸on, Laser Speckle and Applications in Optics (Academic, New York, 1979).

J. C. Dainty, ed., “Laser speckle and related phenomena,” in Vol. 8 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984).

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1977), Vol. 14, pp. 1–44.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout for the characterization of the reflectance properties of the Spectralon calibration panels.

Fig. 2
Fig. 2

Detector assembly that was used to view the Spectralon panel and satisfy the imaging requirements: F, one of three notched filters centered at each wavelength; AS, a 1.00-cm-diameter aperture stop; L, relay lens; SB, a 1.0-cm-diameter scattering baffle; D, a 1-cm-square silicon photodiode with a 0.95-cm-diameter field stop; FS, field stop at the detector. All the internal surfaces within the assembly were painted black to minimize scattering.

Fig. 3
Fig. 3

Relative positions of the I area of the panel that are imaged by the telescope onto detector D, relay lens L, and field stop FS.

Fig. 4
Fig. 4

Signal chain for the two detector channels and the interfacing of the motion control hardware with the 386 computer.

Fig. 5
Fig. 5

Operational capability of the test setup described in the text is revealed in this plot showing the intercomparison between data files recorded for 632.8 nm with the panel oriented at θ i = 45°: ϕ i ; = 0° and 180°. The traces correspond to the cases in which the normal to the panel surface is oriented at +30°(×), 0°(*), and −30°(+) relative to the principal plane. Clearly the ±0.1% criterion for panel isotropy is not satisfied. The resultant anisotropy is a consequence of the Spectralon surface preparation.

Tables (6)

Tables Icon

Table 1 Parameters to Obtain Requisite Beam Diameter on a Panel

Tables Icon

Table 2 Movement of Alignment Reference Above and Below the Principal Plane

Tables Icon

Table 3 Calculated Noise Voltages for the Components in the Signal Chain Referred to the A/D Board Input a

Tables Icon

Table 4 Archive Data Set

Tables Icon

Table 5 Variation in Speckle-Limited SNR as a Function of Wavelength θ, and θ r

Tables Icon

Table 6 Facility Components and Processes that Contribute to Random Uncertainty

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Θ = ( r / s ) = 1 . 9 ° ( full angle ) .
( I / 30 ) = ( F S / 7 . 95 ) I = 3 . 58 cm .
Φ s = 2 λ / D = 1 . 4 × 10 4 ( rad ) .
d s = L Φ s = 4 . 2 × 10 5 ( m ) .

Metrics