Abstract

Lidar backscatter cross-sectional measurements at 1.064, 0.532, and 1.54 μm were acquired during November 1989 and May–June 1990 around the Pacific region by the NASA DC-8 aircraft as part of the Global Backscatter Experiment. The primary motivation for the Global Backscatter Experiment was the study of lidar backscatter cross sections for the development of a spaceborne wind-sensing lidar. Direct backscatter measurements obtained by the NASA Goddard Space Flight Center visible and infrared lidar are compared with backscatter cross sections calculated from aerosol size distributions obtained by particle counters. Results for one flight with pronounced aerosol layers in the upper troposphere southeast of Japan are presented. Because 2-μm region wavelengths are possible candidates for a spaceborne wind-sensing lidar, the visible and infrared lidar backscatter cross sections at 1.064, 0.532, and 1.54 μm are extrapolated to the 2-μm region. The extrapolated 2-μm cross sections are compared with lidar measurements at 9 μm. A significant range in the ratio of 2–9-μm backscatter cross sections is found, but a large number of points concentrate near ratios of three to ten. A large number of 1.064- and 1.54-μm cross sections were binned to provide an estimate of backscatter for various percentiles for the flight. The ratio of the 50-percentile backscatter values at 1.064 and 1.54 μm suggest a λ−1.9 to λ−3.0 wavelength dependence of aerosol backscatter cross section in the near infrared for the observational case.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
    [CrossRef]
  2. M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1-μm solid-state pulsed laser radar for aerosol backscatter profiling,” Final Rep. on NASA Cont. NAS8-37580 (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 41–60.
  3. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.
  4. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [CrossRef] [PubMed]
  5. A. D. Clarke, “Thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Env. 25, a 635–644 (1991).
    [CrossRef]
  6. R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
    [CrossRef]
  7. J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.
  8. G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
    [CrossRef]
  9. G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
    [CrossRef]
  10. J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
    [CrossRef]
  11. A. D. Clarke, “Atmospheric nuclei in the Pacific Midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
    [CrossRef]
  12. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid; application to the clouds of Venus,” Appl. Opt. 14, 208– 219 (1975).
    [PubMed]
  13. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Env. Res. Paper AFGL-TR-79-0214 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1979), p. 94.
  14. O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
    [CrossRef]
  15. V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
    [CrossRef] [PubMed]
  16. D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
    [CrossRef]

1996 (1)

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

1994 (2)

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

1993 (2)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

A. D. Clarke, “Atmospheric nuclei in the Pacific Midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

1992 (2)

V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

1991 (2)

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
[CrossRef]

A. D. Clarke, “Thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Env. 25, a 635–644 (1991).
[CrossRef]

1988 (1)

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

1976 (1)

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
[CrossRef]

1975 (1)

Bowdle, D. A.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

Bufton, J. L.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.

Cavanaugh, J. F.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.

Chudamani, S.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.

Clarke, A. D.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

A. D. Clarke, “Atmospheric nuclei in the Pacific Midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

A. D. Clarke, “Thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Env. 25, a 635–644 (1991).
[CrossRef]

Cutten, D. R.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

Deepak, A.

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

De-Felice, T. R.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

Farrukh, U. O.

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Env. Res. Paper AFGL-TR-79-0214 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1979), p. 94.

Ferry, G.

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

Ferry, G. V.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

Frehlich, R. G.

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1-μm solid-state pulsed laser radar for aerosol backscatter profiling,” Final Rep. on NASA Cont. NAS8-37580 (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 41–60.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

Hampton, D.

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1-μm solid-state pulsed laser radar for aerosol backscatter profiling,” Final Rep. on NASA Cont. NAS8-37580 (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 41–60.

Jarzembski, M.

V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Jones, W. D.

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Kavaya, M. J.

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1-μm solid-state pulsed laser radar for aerosol backscatter profiling,” Final Rep. on NASA Cont. NAS8-37580 (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 41–60.

Kent, G. S.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
[CrossRef]

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

Khare, B. N.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
[CrossRef]

Livingstone, J. M.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

McCormick, M. P.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
[CrossRef]

Menzies, R. T.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

Palmer, K. F.

Pollack, J. B.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
[CrossRef]

Porter, J. N.

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

Pueschel, R. F.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

Rothermel, J.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Schaffner, S. K.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Env. Res. Paper AFGL-TR-79-0214 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1979), p. 94.

Spinhirne, J. D.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.

Srivastava, V.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

V. Srivastava, M. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

Toon, O. B.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
[CrossRef]

Tratt, D. M.

Wang, P. H.

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

Williams, D.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

Appl. Opt. (3)

Atmos. Env. (2)

A. D. Clarke, “Thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Env. 25, a 635–644 (1991).
[CrossRef]

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. De-Felice, “Aerosol abundances and optical characteristics in the Pacific Basin free troposphere,” Atmos. Env. 28, 951–960 (1994).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–13 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

G. S. Kent, U. O. Farrukh, P. H. Wang, A. Deepak, “SAGE I and SAM II measurements of 1.0-μm aerosol extinction in the free troposphere,” J. Appl. Meteorol. 27, 269–279 (1988).
[CrossRef]

J. Geophys. Res. (5)

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatalogy of the free tropospheric aerosol from 1.0-μm satellite occultation measurements,” J. Geophys. Res. 96, 5249–5267 (1991).
[CrossRef]

J. N. Porter, A. D. Clarke, G. Ferry, R. F. Pueschel, “Aircraft studies of size-dependent aerosol sampling through inlets,” J. Geophys. Res. 97, 3815–3824 (1992).
[CrossRef]

A. D. Clarke, “Atmospheric nuclei in the Pacific Midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. 98, 20633–20647 (1993).
[CrossRef]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 33, 5733–5748 (1976).
[CrossRef]

Other (4)

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1-μm solid-state pulsed laser radar for aerosol backscatter profiling,” Final Rep. on NASA Cont. NAS8-37580 (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 41–60.

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne Nd:YAG–methane Raman lidar,” Appl. Opt. to be published.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Env. Res. Paper AFGL-TR-79-0214 (U.S. Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass., 1979), p. 94.

J. Rothermel, W. D. Jones, M. Jarzembski, V. Srivastava, D. Hampton, “In situ backscatter measurements over Pacific Ocean using two coherent focused CO2 lidars,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation and Special Sessions on Laser Atmospheric Studies (American Meteorological Society, Boston, Mass., 1991), pp. J257–J260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Stacked bar chart showing percentage contribution of the various size ranges to the total backscatter cross section. Each size bin is broken up to identify the contributions of sulfuric acid, sulfate, and dust. The data set used was obtained at 6.2 km from the Japan local flight of 3 June 1990.

Fig. 2
Fig. 2

NASA DC-8 flight track from 03:23 to 04:51 UTC on 3 June 1990 showing pressure altitude as a function of location (latitude, longitude). The aircraft flew over the same region of the Pacific Ocean southeast of Japan, facilitating intercomparisons at 20,000 ft between the lidar data obtained from the higher altitude with in situ data obtained ~1 h later at the lower flight level.

Fig. 3
Fig. 3

Intercomparison between Mie calculations and lidar observations of backscatter cross sections at 0.532, 1.064, and 1.54 μm. Open and filled symbols of the same type are used for corresponding lidar and Mie data sets. The bottom curve is for a case of very low aerosol concentration on 31 May 1990.

Fig. 4
Fig. 4

Scatter plot comparing airborne lidar backscatter cross-section measurements. The plot includes data from a local flight out of Japan on 3 June 1990.

Fig. 5
Fig. 5

Histogram representation of the scatter plot data, showing frequency of data points as a function of backscatter cross section. The backscatter cross sections are binned on a logarithmic scale.

Fig. 6
Fig. 6

Histogram plot of 2.1-μm backscatter cross sections extrapolated from the near-infrared lidar data at 1.06 and 1.54 μm. The data are from the local Japan flight of 3 June 1990.

Fig. 7
Fig. 7

Contour plot of 2.1-μm backscatter cross sections extrapolated from the near-infrared lidar data versus the 9.25-μm Jet Propulsion Laboratory CO2 lidar measurements. The data are from the local Japan flight of 3 June 1990. The contour lines are spaced equidistant on a logarithmic scale, such that each inner contour line represents twice as many data points as the adjacent contour that encloses it.

Tables (1)

Tables Icon

Table 1 GSFC Lidar Characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

log β 3 = ( log β 2 log β 1 λ 2 λ 1 ) λ 3 + ( λ 1 log β 2 λ 2 log β 1 λ 1 λ 2 ) ,

Metrics