Abstract

Thermal effects caused by launching conditions in a CO2 laser beam delivery that uses metallic hollow waveguides is investigated. It is found that front-end clipping is the main cause of thermal loading and generates a steep temperature gradient at the fiber front end while the continuous beam attenuation produces a temperature distribution declining slowly along the waveguide.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optolectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
  2. S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).
  3. C. E. Morrow, G. Gu, “A novel, high power monolithic hollow waveguide for CO2 laser beam delivery,” in Laser Materials Processing, P. E. Denney, I. Miyamoto, B. L. Mordike, eds., Proc. SPIE2306, 403–412 (1994).
  4. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  5. R. L. Abrams, “Coupling loss in hollow waveguide laser resonators,” IEEE J. Quantum Electron. QE-8, 838–843 (1972).
    [CrossRef]
  6. D. Q. Kern, A. D. Kraus, Extended Surface Heat Transfer (McGraw-Hill, New York, 1972), Chap. 2, p. 113.
  7. F. Kreith, Principles of Heat Transfer, 3rd ed. (Harper & Row, New York, 1973), Chap. 7, p. 401.
  8. S. Karasawa, M. Miyagi, S. Nishita, “Temperature distribution along oversized hollow-core waveguides for infrared radiation,” Appl. Opt. 26, 4581–4586 (1987).
    [CrossRef] [PubMed]
  9. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
    [CrossRef]

1987 (2)

S. Karasawa, M. Miyagi, S. Nishita, “Temperature distribution along oversized hollow-core waveguides for infrared radiation,” Appl. Opt. 26, 4581–4586 (1987).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

1972 (1)

R. L. Abrams, “Coupling loss in hollow waveguide laser resonators,” IEEE J. Quantum Electron. QE-8, 838–843 (1972).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abrams, R. L.

R. L. Abrams, “Coupling loss in hollow waveguide laser resonators,” IEEE J. Quantum Electron. QE-8, 838–843 (1972).
[CrossRef]

Artjushenko, S.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Gu, G.

C. E. Morrow, G. Gu, “A novel, high power monolithic hollow waveguide for CO2 laser beam delivery,” in Laser Materials Processing, P. E. Denney, I. Miyamoto, B. L. Mordike, eds., Proc. SPIE2306, 403–412 (1994).

Harrington, J. A.

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optolectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).

Hongo, A.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Ionov, V.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Kalaidjian, K.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Karasawa, S.

S. Karasawa, M. Miyagi, S. Nishita, “Temperature distribution along oversized hollow-core waveguides for infrared radiation,” Appl. Opt. 26, 4581–4586 (1987).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Kern, D. Q.

D. Q. Kern, A. D. Kraus, Extended Surface Heat Transfer (McGraw-Hill, New York, 1972), Chap. 2, p. 113.

Kraus, A. D.

D. Q. Kern, A. D. Kraus, Extended Surface Heat Transfer (McGraw-Hill, New York, 1972), Chap. 2, p. 113.

Kreith, F.

F. Kreith, Principles of Heat Transfer, 3rd ed. (Harper & Row, New York, 1973), Chap. 7, p. 401.

Kryukov, A.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Kuzin, E.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Lerman, A.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matsuura, Y.

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optolectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).

Miyagi, M.

S. Karasawa, M. Miyagi, S. Nishita, “Temperature distribution along oversized hollow-core waveguides for infrared radiation,” Appl. Opt. 26, 4581–4586 (1987).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Morrow, C. E.

C. E. Morrow, G. Gu, “A novel, high power monolithic hollow waveguide for CO2 laser beam delivery,” in Laser Materials Processing, P. E. Denney, I. Miyamoto, B. L. Mordike, eds., Proc. SPIE2306, 403–412 (1994).

Nishida, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Nishita, S.

Prokhorov, A.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Sakamoto, K.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Stepanov, E.

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Quantum Electron. (1)

R. L. Abrams, “Coupling loss in hollow waveguide laser resonators,” IEEE J. Quantum Electron. QE-8, 838–843 (1972).
[CrossRef]

Opt. Laser Technol. (1)

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6μm,” Opt. Laser Technol. 19, 214–216 (1987).
[CrossRef]

Other (5)

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optolectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).

S. Artjushenko, V. Ionov, K. Kalaidjian, A. Kryukov, E. Kuzin, A. Lerman, A. Prokhorov, E. Stepanov, “Infrared fibers: power delivery and medical applications,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 25–36 (1995).

C. E. Morrow, G. Gu, “A novel, high power monolithic hollow waveguide for CO2 laser beam delivery,” in Laser Materials Processing, P. E. Denney, I. Miyamoto, B. L. Mordike, eds., Proc. SPIE2306, 403–412 (1994).

D. Q. Kern, A. D. Kraus, Extended Surface Heat Transfer (McGraw-Hill, New York, 1972), Chap. 2, p. 113.

F. Kreith, Principles of Heat Transfer, 3rd ed. (Harper & Row, New York, 1973), Chap. 7, p. 401.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Temperature versus launching alignment: ○, horizontal misalignment; ●, vertical misalignment; ∇, power output from fiber with horizontal misalignment.

Fig. 2
Fig. 2

Temperature along the fiber: ●, experimental data; ––, theoretically fitted curve.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P i = P 0 i exp ( α i l )
d Q = d P = i P 0 i α i exp ( α i l ) d l .
T = T 0 + W m s k exp ( m l ) ,
m = 4 h k D 2 D 2 2 D 1 2 ,
T = b exp ( α l ) .
T = T 0 + a exp ( m l ) + b exp ( α l ) ,

Metrics