Abstract

A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC’s) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R2 = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2–19%.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1986).
    [CrossRef]
  2. T. Imasaka, “Analytical molecular spectroscopy with diode lasers,” Spectrochim. Acta Rev. 15, 329–348 (1993).
  3. H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).
  4. D. T. Cassidy, “Trace gas detection using 1.3 μm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  5. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1525 (1985).
    [CrossRef]
  6. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  7. X. Zhu, D. T. Cassidy, “Electronic subtracter for trace-gas detection with InGaAsP diode lasers,” Appl. Opt. 34, 8303–8308 (1995).
    [CrossRef] [PubMed]
  8. C. E. Wieman, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  9. S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
    [CrossRef]
  10. L. G. Weyer, “Near-infrared spectroscopy of organic substances,” Appl. Spectrosc. Rev. 21, 1–43 (1985).
    [CrossRef]
  11. T. Hirschfeld, A. Z. Hed, eds., Atlas of Near Infrared Spectra (Sadtler Research Laboratories, Philadelphia, Pa., 1981).
  12. H. Martens, M. Martens, “NIR spectroscopy-applied philosophy,” in Near Infra-Red Spectroscopy, K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg, eds. (Ellis Horwood, Chichester, U.K., 1992).
  13. T. Naes, H. Martens, “Multivariate calibration. II. Chemometric methods,” Trends Anal. Chem. 3, 266–271 (1984).
    [CrossRef]
  14. K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg eds., Near Infra-Red Spectroscopy (Ellis Horwood, Chichester, U.K., 1992).
  15. D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
    [CrossRef]
  16. H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, U.K., 1989).
  17. E. R. Malinowski, B. G. Howery, Factor Analysis in Chemistry (Wiley, New York, 1980), Chap. 7.
  18. P. Geladi, B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
    [CrossRef]

1995 (1)

1993 (3)

T. Imasaka, “Analytical molecular spectroscopy with diode lasers,” Spectrochim. Acta Rev. 15, 329–348 (1993).

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

1992 (1)

1991 (2)

C. E. Wieman, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

1988 (1)

1986 (2)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1986).
[CrossRef]

P. Geladi, B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

1985 (2)

1984 (1)

T. Naes, H. Martens, “Multivariate calibration. II. Chemometric methods,” Trends Anal. Chem. 3, 266–271 (1984).
[CrossRef]

Bjorklund, G. C.

Bruce, D. M.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

Camparo, J. C.

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1986).
[CrossRef]

Cassidy, D. T.

Forouhar, S.

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

Gehrtz, M.

Geladi, P.

P. Geladi, B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Howery, B. G.

E. R. Malinowski, B. G. Howery, Factor Analysis in Chemistry (Wiley, New York, 1980), Chap. 7.

Imasaka, T.

T. Imasaka, “Analytical molecular spectroscopy with diode lasers,” Spectrochim. Acta Rev. 15, 329–348 (1993).

Keo, S.

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

Kowalski, B. R.

P. Geladi, B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Ksendzov, A.

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

Larsson, A.

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

Malinowski, E. R.

E. R. Malinowski, B. G. Howery, Factor Analysis in Chemistry (Wiley, New York, 1980), Chap. 7.

Martens, H.

T. Naes, H. Martens, “Multivariate calibration. II. Chemometric methods,” Trends Anal. Chem. 3, 266–271 (1984).
[CrossRef]

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, U.K., 1989).

H. Martens, M. Martens, “NIR spectroscopy-applied philosophy,” in Near Infra-Red Spectroscopy, K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg, eds. (Ellis Horwood, Chichester, U.K., 1992).

Martens, M.

H. Martens, M. Martens, “NIR spectroscopy-applied philosophy,” in Near Infra-Red Spectroscopy, K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg, eds. (Ellis Horwood, Chichester, U.K., 1992).

Naes, T.

T. Naes, H. Martens, “Multivariate calibration. II. Chemometric methods,” Trends Anal. Chem. 3, 266–271 (1984).
[CrossRef]

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, U.K., 1989).

Silver, J. A.

Telle, H. R.

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

Temkin, H.

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

Ventrudo, B. F.

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

Weyer, L. G.

L. G. Weyer, “Near-infrared spectroscopy of organic substances,” Appl. Spectrosc. Rev. 21, 1–43 (1985).
[CrossRef]

Whittaker, E. A.

Wieman, C. E.

C. E. Wieman, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Zhu, X.

Anal. Chim. Acta (1)

P. Geladi, B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. Rev. (1)

L. G. Weyer, “Near-infrared spectroscopy of organic substances,” Appl. Spectrosc. Rev. 21, 1–43 (1985).
[CrossRef]

Contemp. Phys. (1)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1986).
[CrossRef]

Electron. Lett. (1)

S. Forouhar, S. Keo, A. Larsson, A. Ksendzov, H. Temkin, “Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at ~2.0 μm,” Electron. Lett. 29, 574–576 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Rev. Sci. Instrum. (2)

C. E. Wieman, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

D. T. Cassidy, D. M. Bruce, B. F. Ventrudo, “Short-external-cavity module for enhanced single-mode tuning of InGaAsP and AlGaAs semiconductor diode lasers,” Rev. Sci. Instrum. 62, 2385–2388 (1991).
[CrossRef]

Spectrochim. Acta Rev. (2)

T. Imasaka, “Analytical molecular spectroscopy with diode lasers,” Spectrochim. Acta Rev. 15, 329–348 (1993).

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

Trends Anal. Chem. (1)

T. Naes, H. Martens, “Multivariate calibration. II. Chemometric methods,” Trends Anal. Chem. 3, 266–271 (1984).
[CrossRef]

Other (5)

K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg eds., Near Infra-Red Spectroscopy (Ellis Horwood, Chichester, U.K., 1992).

H. Martens, T. Naes, Multivariate Calibration (Wiley, Chichester, U.K., 1989).

E. R. Malinowski, B. G. Howery, Factor Analysis in Chemistry (Wiley, New York, 1980), Chap. 7.

T. Hirschfeld, A. Z. Hed, eds., Atlas of Near Infrared Spectra (Sadtler Research Laboratories, Philadelphia, Pa., 1981).

H. Martens, M. Martens, “NIR spectroscopy-applied philosophy,” in Near Infra-Red Spectroscopy, K. I. Hildrum, T. Isaksson, T. Naes, A. Tandberg, eds. (Ellis Horwood, Chichester, U.K., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral output for the MSXC laser at I = 55 mA and T = 22 °C as the distance of the mirror behind the laser is scanned. A total of 18 distinct modes was obtained. The difference in wavelength from the first mode to the last mode is 72 nm.

Fig. 2
Fig. 2

Experimental setup for liquid detection. The laser was modulated by a square wave at 5 kHz and phase-sensitive detection was employed. The single modes were scanned by ramping the PZT voltage. The sample is in a cuvette cell of 1-cm path length in the signal arm. The ratio of the transmission signals from the measurement arm to the reference arm was collected by a computer and processed by the PLS and PCR algorithms.

Fig. 3
Fig. 3

Spectra of acetone, methanol, and a mixture of H2O and D2O over 17 single laser modes. H2O was diluted because absorptance at the 1.45-μm peak was too strong for the 1-cm cell. The contrast shows that the MSXC laser provides a wide enough spectral coverage for liquid detection.

Fig. 4
Fig. 4

Laser power and rms values versus mirror position. The spikes on the rms values were caused by the competition between laser modes and mark the positions where the laser mode hops. One mode period (λ/2) is shown from channel 80 to channel 400. The single-mode regions can be identified by processing the rms spectrum.

Fig. 5
Fig. 5

Prediction of water concentration by diode laser spectroscopy versus true values. The straight line represents the ideal prediction with a slope of unity. The prediction from the diode laser has an R2 of 0.997 and a rms error of prediction of 0.29%.

Metrics