Abstract

A method is proposed by which we construct images through turbid media, plotting directly either the transport-scattering coefficient μs′ or the absorption coefficient μa. These optical parameters are obtained from the best fit of the time-resolved transmittance curves with a diffusion model. Measurements were performed with a time-correlated single-photon counting system on realistic tissue phantoms simulating a tumor mass within a breast. Images were obtained with an incident power of <1 mW and an acquisition time of 1 s/point. Comparison of μs′ and μa images with time-integrated images constructed from the same experimental data shows that the fitting method discriminates between scattering and absorption inhomogeneities and improves image quality for scattering but not for absorption inhomogeneities.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
    [CrossRef] [PubMed]
  2. 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60 (Pergamon, New York, 1991).
  3. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
    [CrossRef]
  4. G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  5. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  6. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
    [CrossRef] [PubMed]
  7. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  8. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
    [CrossRef] [PubMed]
  9. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [CrossRef] [PubMed]
  10. J. Watson, P. Georges, T. Lepine, B. Alonzi, A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20, 231–233 (1995).
    [CrossRef] [PubMed]
  11. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
    [CrossRef] [PubMed]
  12. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  13. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
    [CrossRef] [PubMed]
  14. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
    [CrossRef] [PubMed]
  15. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
    [CrossRef] [PubMed]
  16. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  17. L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
    [CrossRef]
  18. A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).
  19. J. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  20. A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
    [CrossRef] [PubMed]
  21. S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
    [CrossRef] [PubMed]
  22. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  23. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
    [CrossRef] [PubMed]
  24. J. A. Moon, R. Mahon, M. D. Duncan, R. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
    [CrossRef] [PubMed]
  25. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
    [CrossRef] [PubMed]
  26. J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
    [CrossRef] [PubMed]
  27. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  28. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  29. L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
    [CrossRef]
  30. K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
    [CrossRef] [PubMed]
  31. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  32. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  33. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
    [CrossRef] [PubMed]
  34. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  35. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  36. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  37. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
    [CrossRef] [PubMed]
  38. B. Conway, “Nationwide Evaluation of X-ray Trends (NEXT): tabulation and graphical summary of 1988 mammography survey,” presented at the Conference of Radiation Control Program Directors, Salt Lake City, Utah, Oct. 1990.
  39. E. S. deParedes, Atlas of Film-Screen Mammography (Urban and Schwarzenberg, Baltimore, Md., 1990).
  40. J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
    [CrossRef]
  41. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]

1995 (8)

P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

J. Watson, P. Georges, T. Lepine, B. Alonzi, A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20, 231–233 (1995).
[CrossRef] [PubMed]

S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

1994 (8)

Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
[CrossRef] [PubMed]

1993 (10)

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

J. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
[CrossRef] [PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef] [PubMed]

J. A. Moon, R. Mahon, M. D. Duncan, R. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

1992 (3)

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

1991 (2)

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
[CrossRef] [PubMed]

1990 (4)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

1989 (1)

1978 (1)

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Alfano, R. R.

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
[CrossRef] [PubMed]

Alonzi, B.

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

Berg, R.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

Berns, M. W.

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Boas, D. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Bolden, S.

P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Bonner, R. F.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Brun, A.

Chance, B.

S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chen, Y.

Conway, B.

B. Conway, “Nationwide Evaluation of X-ray Trends (NEXT): tabulation and graphical summary of 1988 mammography survey,” presented at the Conference of Radiation Control Program Directors, Salt Lake City, Utah, Oct. 1990.

Cope, M.

A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).

Cubeddu, R.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Das, B. B.

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Delpy, D. T.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).

deParedes, E. S.

E. S. deParedes, Atlas of Film-Screen Mammography (Urban and Schwarzenberg, Baltimore, Md., 1990).

Donelli, P.

G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
[CrossRef] [PubMed]

Duncan, A.

A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).

Duncan, M. D.

Feng, S.

Feng, T.-C.

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Fishkin, J.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gandjbakhche, A. H.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Georges, P.

Gratton, E.

Hall, D. J.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Hebden, J. C.

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Hee, M. R.

Hefetz, Y.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

Izatt, J. A.

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Jacobson, J. M.

Jacques, S. L.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

Jain, A.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Jarlman, O.

Key, H.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Knutson, J. R.

A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

Knuttel, A.

A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

Kölzer, J.

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Lasdon, L. S.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Lepine, T.

Liu, F.

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
[CrossRef] [PubMed]

Madsen, S. J.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

Mahon, R.

McAdams, M. S.

Mitic, G.

Moon, J. A.

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Nossal, R.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Otto, J.

Park, Y. D.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

Patterson, M. S.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Piles, E.

Ratner, M.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Reintjes, J.

Reintjes, R.

Schmitt, J. M.

A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

Sevick, E. M.

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Sölkner, G.

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Svanberg, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

Swanson, E. A.

Tankersley, L. L.

Taroni, P.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Tong, T.

P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Tsay, T.-T.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Valentini, G.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Waren, A. D.

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

Watson, J.

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Whitlock, T. L.

A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).

Wilson, B. C.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Wingo, P. A.

P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Wong, K. S.

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Yoo, K. M.

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
[CrossRef] [PubMed]

Zaccanti, G.

G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
[CrossRef] [PubMed]

Zeng, F.-A.

Zinth, W.

Appl. Opt. (4)

G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
[CrossRef] [PubMed]

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental test of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

Appl. Opt. (6)

Assoc. Comput. Mach. Trans. Math. Software (1)

L. S. Lasdon, A. D. Waren, A. Jain, M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” Assoc. Comput. Mach. Trans. Math. Software 4, 34–50 (1978).
[CrossRef]

CA Cancer J. Clin. (1)

P. A. Wingo, T. Tong, S. Bolden, “Cancer Statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Invest. Radiol. (1)

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary inυiυo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Med. Phys. (2)

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Opt. Lett. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Opt. Eng. (1)

L. O. Svaasand, B. J. Tromberg, R. C. Haskell, T.-T. Tsay, M. W. Berns, “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32, 258–266 (1993).
[CrossRef]

Opt. Laser Technol. (1)

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

Opt. Lett. (8)

Phys. Med. Biol. (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Phys. Med. Biol. (2)

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Monte Carlo modeling of light propagation in breast tissue,” Phys. Med. Biol. 36, 591–602 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?,” Phys. Rev. Lett. 64, 2647–2650 (1990); Phys. Rev. Lett. 65, 2210–2211 (1990).
[CrossRef] [PubMed]

Proc. IEEE (1)

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Other (4)

B. Conway, “Nationwide Evaluation of X-ray Trends (NEXT): tabulation and graphical summary of 1988 mammography survey,” presented at the Conference of Radiation Control Program Directors, Salt Lake City, Utah, Oct. 1990.

E. S. deParedes, Atlas of Film-Screen Mammography (Urban and Schwarzenberg, Baltimore, Md., 1990).

1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60 (Pergamon, New York, 1991).

A. Duncan, T. L. Whitlock, M. Cope, D. T. Delpy, “A multiwavelength, wideband, intensity modulated optical spectrometer for near-infrared spectroscopy and imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 248–257 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical time-resolved transmittance curve acquired from a tissue phantom (μ s ′ = 8 cm−1, μ a = 0.1 cm−1; thickness, 4.3 cm). The time origin t = 0 corresponds to the beginning of the integration interval, and the solid marker indicates its end. The two dotted markers delimit the fitting range.

Fig. 2
Fig. 2

Tissue phantom and scanning geometry. Point measurements were performed every 2 mm over a 4 cm × 4 cm area (dashed square).

Fig. 3
Fig. 3

Four-centimeter line scans on an agarose phantom (solid circles) and on a water solution of Intralipid and ink containing a plastic tube 1 mm thick (open circles). In both cases the inclusion has the same optical properties as the background (μ s ′ = 8 cm−1, μ a = 0.1 cm−1). The plots display (a) the fitted μ s ′ and (b) the time-integrated intensity.

Fig. 4
Fig. 4

Images of 1.1-cm-diameter cylindrical inclusions with μ s INC′ = 0.5μ s BG′ (sample 1, top row), μ s INC′ = 1.5μ s BG′ (sample 2, middle row), μ s INC′ = 2μ s BG′ (sample 3, bottom row): plot of the fitted μ s ′ (left column), the fitted μ a (middle column), and the integrated intensity (right column). For all samples, μ s BG′ = 8 cm−1 and μ a INC = μ a BG = 0.1 cm−1.

Fig. 5
Fig. 5

Images of a 1-cm-high, 1.1-cm-diameter cylindrical inclusion with μ s INC′ = 2μ s BG′ (sample 4): plot of the fitted μ s ′ (left), the fitted μ a (middle), and the integrated intensity (right); μ s BG′ = 8 cm−1 and μ a INC = μ a BG = 0.1 cm−1.

Fig. 6
Fig. 6

Images of a 0.8-cm-high, 0.6-cm-diameter cylindrical inclusion with μ s INC′ = 2μ s BG′ (sample 5): plot of the fitted μ s ′ (left), the fitted μ a (middle), and the integrated intensity (right); μ s BG′ = 8 cm−1 and μ a INC = μ a BG = 0.1 cm−1.

Fig. 7
Fig. 7

Fitted μ s ′ (filled circles) and time-integrated intensity (open circles) as a function of μ s INC′. Both plots are normalized. For all measurements μ s BG′ = 8 cm−1 and μ a INC = μ a BG = 0.1 cm−1.

Fig. 8
Fig. 8

Images of a 1.1-cm-diameter cylindrical inclusion with μ a INC = 2μ a BG (sample 6): plot of the fitted μ s ′ (left), the fitted μ a (middle), and the integrated intensity (right). μ s INC′ = μ s BG′ = 8 cm−1 and μ a BG = 0.1 cm−1.

Tables (2)

Tables Icon

Table 1 Optical Properties and Geometry of Samples 1–6

Tables Icon

Table 2 Ranges of the Fitted Coefficients, Average Values along the Inclusion Axis, and in the Background, and Contrast between Inclusion and Background

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( ρ, d , t ) = ( 4 π D υ ) 3 / 2 t 5 / 2 exp ( μ a υ t ) exp ( ρ 2 / 4 D υ t ) × n = 1 , k = 2 n 1 n = { ( k d z 0 ) exp [ ( k d z 0 ) 2 4 D υ t ] ( k d + z 0 ) exp [ ( k d + z 0 ) 2 4 D υ t ] } ,

Metrics