Abstract

We present an original implementation of the absolute-sphere method recently proposed by Ohno. The luminous-flux unit, the lumen, is realized by means of an integrating sphere with an opening calibrated by a luminous-intensity standard placed outside. The adapted experimental setup permits one to measure luminous-flux values between 5 and 2500 lm with a significant improvement with respect to the simulated performances reported in the literature. Traditionally, the luminous-flux unit, the lumen, is realized by goniophotometric techniques in which the luminous-intensity distribution is measured and integrated over the whole solid angle. Thus sphere results are compared with those obtained with the Istituto Elettrotecnico Nazionale goniophotometer. In particular, a set of standards, characterized by luminous-flux values of ~2000 lm, has been calibrated with both techniques. We highlight some of the problems encountered. Experimental results show that the agreement between the two methods is within the estimated uncertainty and suggest promising areas for future research.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. CIE, “The measurement of luminous flux,” publication CIE 84 (Commission Internationale de l’Eclairage, Paris, 1989).
  2. O. C. Jones, R. G. Berry, “A new determination of the lumen,” Metrologia 6, 81–89 (1970).
    [CrossRef]
  3. D. Förste, “Ein Goniophotometer zur genauen Bestimmung des Lichtstromes,” Licht Forschung 1, 30–36 (1979).
  4. M. E. Thain, F. Hengstberger, “A new goniophotometer for the calibration of small luminous flux standard lamps,” J. Phys. Sci. Instrum. 15, 675–678 (1982).
    [CrossRef]
  5. J. Krochmann, P. Marx, “Ein digitales Messgerät zur Ermittlung des Lichtstromes aus der Lichtstärkeverteilung,” Lichttechnik 21, 97A–98A (1969).
  6. J. Bastie, B. Andasse, R. Foucart, “Luminous flux measurements with a goniophotometer: study of time effects on data collection,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 45–47.
  7. R. S. Hu, “Importance of axis alignment in goniophotometry,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 21–22.
  8. D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).
  9. J. Jacquez, H. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460–470 (1955).
    [CrossRef]
  10. D. Goebel, “Generalized integrating-sphere theory,” Appl. Opt. 6, 125–128 (1967).
    [CrossRef] [PubMed]
  11. Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637–2647 (1994).
    [CrossRef] [PubMed]
  12. Y. Ohno, “New method for realizing total flux scale using an integrating sphere with an external source,” J. Illum. Eng. Soc. 24(1), 106–115 (1995).
  13. Y. Ohno, “Realization of NIST luminous flux scale using an integrating sphere with an external source,” in Proceedings of the 23rd Session of CIE (Commission Internationale de l’Eclairage, Paris), Vol. 1(1), Div. 2, pp. 87–90.
  14. C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
    [CrossRef]
  15. R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1981).

1995 (1)

Y. Ohno, “New method for realizing total flux scale using an integrating sphere with an external source,” J. Illum. Eng. Soc. 24(1), 106–115 (1995).

1994 (1)

1988 (1)

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

1982 (1)

M. E. Thain, F. Hengstberger, “A new goniophotometer for the calibration of small luminous flux standard lamps,” J. Phys. Sci. Instrum. 15, 675–678 (1982).
[CrossRef]

1980 (1)

D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).

1979 (1)

D. Förste, “Ein Goniophotometer zur genauen Bestimmung des Lichtstromes,” Licht Forschung 1, 30–36 (1979).

1970 (1)

O. C. Jones, R. G. Berry, “A new determination of the lumen,” Metrologia 6, 81–89 (1970).
[CrossRef]

1969 (1)

J. Krochmann, P. Marx, “Ein digitales Messgerät zur Ermittlung des Lichtstromes aus der Lichtstärkeverteilung,” Lichttechnik 21, 97A–98A (1969).

1967 (1)

1955 (1)

Andasse, B.

J. Bastie, B. Andasse, R. Foucart, “Luminous flux measurements with a goniophotometer: study of time effects on data collection,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 45–47.

Bastie, J.

J. Bastie, B. Andasse, R. Foucart, “Luminous flux measurements with a goniophotometer: study of time effects on data collection,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 45–47.

Berry, R. G.

O. C. Jones, R. G. Berry, “A new determination of the lumen,” Metrologia 6, 81–89 (1970).
[CrossRef]

Förste, D.

D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).

D. Förste, “Ein Goniophotometer zur genauen Bestimmung des Lichtstromes,” Licht Forschung 1, 30–36 (1979).

Foucart, R.

J. Bastie, B. Andasse, R. Foucart, “Luminous flux measurements with a goniophotometer: study of time effects on data collection,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 45–47.

Gentile, C.

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

Goebel, D.

Hengstberger, F.

M. E. Thain, F. Hengstberger, “A new goniophotometer for the calibration of small luminous flux standard lamps,” J. Phys. Sci. Instrum. 15, 675–678 (1982).
[CrossRef]

Howell, J. R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1981).

Hu, R. S.

R. S. Hu, “Importance of axis alignment in goniophotometry,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 21–22.

Jacquez, J.

Jones, O. C.

O. C. Jones, R. G. Berry, “A new determination of the lumen,” Metrologia 6, 81–89 (1970).
[CrossRef]

Krochmann, J.

J. Krochmann, P. Marx, “Ein digitales Messgerät zur Ermittlung des Lichtstromes aus der Lichtstärkeverteilung,” Lichttechnik 21, 97A–98A (1969).

Kuppenheim, H.

Martin, H.

D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).

Marx, P.

J. Krochmann, P. Marx, “Ein digitales Messgerät zur Ermittlung des Lichtstromes aus der Lichtstärkeverteilung,” Lichttechnik 21, 97A–98A (1969).

Ohno, Y.

Y. Ohno, “New method for realizing total flux scale using an integrating sphere with an external source,” J. Illum. Eng. Soc. 24(1), 106–115 (1995).

Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637–2647 (1994).
[CrossRef] [PubMed]

Y. Ohno, “Realization of NIST luminous flux scale using an integrating sphere with an external source,” in Proceedings of the 23rd Session of CIE (Commission Internationale de l’Eclairage, Paris), Vol. 1(1), Div. 2, pp. 87–90.

Rastello, M. L.

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

Rossi, G.

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

Sauter, G.

D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).

Siegel, R.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1981).

Soardo, P.

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

Thain, M. E.

M. E. Thain, F. Hengstberger, “A new goniophotometer for the calibration of small luminous flux standard lamps,” J. Phys. Sci. Instrum. 15, 675–678 (1982).
[CrossRef]

Appl. Opt. (2)

J. Illum. Eng. Soc. (1)

Y. Ohno, “New method for realizing total flux scale using an integrating sphere with an external source,” J. Illum. Eng. Soc. 24(1), 106–115 (1995).

J. Opt. Soc. Am. (1)

J. Phys. Sci. Instrum. (1)

M. E. Thain, F. Hengstberger, “A new goniophotometer for the calibration of small luminous flux standard lamps,” J. Phys. Sci. Instrum. 15, 675–678 (1982).
[CrossRef]

Licht Forschung (2)

D. Förste, “Ein Goniophotometer zur genauen Bestimmung des Lichtstromes,” Licht Forschung 1, 30–36 (1979).

D. Förste, G. Sauter, H. Martin, “Elimination des Fremdlichts bei der Lichtstrombestimmung mit dem Goniophotometer,” Licht Forschung 2, 27–35 (1980).

Lichttechnik (1)

J. Krochmann, P. Marx, “Ein digitales Messgerät zur Ermittlung des Lichtstromes aus der Lichtstärkeverteilung,” Lichttechnik 21, 97A–98A (1969).

Light. Res. Technol. (1)

C. Gentile, M. L. Rastello, G. Rossi, P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[CrossRef]

Metrologia (1)

O. C. Jones, R. G. Berry, “A new determination of the lumen,” Metrologia 6, 81–89 (1970).
[CrossRef]

Other (5)

CIE, “The measurement of luminous flux,” publication CIE 84 (Commission Internationale de l’Eclairage, Paris, 1989).

J. Bastie, B. Andasse, R. Foucart, “Luminous flux measurements with a goniophotometer: study of time effects on data collection,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 45–47.

R. S. Hu, “Importance of axis alignment in goniophotometry,” in Proceedings of the 22nd Session of CIE (Commission Internationale de l’Eclairage, Paris, 1991), Vol. 1(1), Div. 2, pp. 21–22.

R. Siegel, J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1981).

Y. Ohno, “Realization of NIST luminous flux scale using an integrating sphere with an external source,” in Proceedings of the 23rd Session of CIE (Commission Internationale de l’Eclairage, Paris), Vol. 1(1), Div. 2, pp. 87–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the absolute sphere: aa′, trace of the aperture on the sphere; bb′, diaphragm perpendicular to the xy plane. External lamp L with coordinates (x 0, y 0) shines a cone of light with the same axis of the diaphragm; the internal lamp is positioned at O; D, detector; B, baffle in front of it perpendicular to the xy plane.

Fig. 2
Fig. 2

Experimental setup for the absolute sphere measurement. From left to right, the luminous intensity standard on the optical bench, the diaphragm and the hood sustaining it, the absolute sphere, and the detector upon it.

Fig. 3
Fig. 3

Spherical surface covered by the goniophotometric measurement.

Fig. 4
Fig. 4

Ratios between the value measured by the absolute sphere and that measured by the goniophotometer for six standard lamps; the dashed line refers to the mean value of this ratio.

Tables (7)

Tables Icon

Table 1 Uncertainty Budget for the Luminous-Flux Measurement with the Absolute Sphere

Tables Icon

Table 2 Uncertainty Budget for Luminous-Flux Measurement with a Goniophotometer

Tables Icon

Table 3 Conversion Factors f with Different Diaphragms D 1 and D 2 and Measuring Distances

Tables Icon

Table 4 Fraction of Flux Lost through the Aperture by Different Flux Lamps inside the Sphere

Tables Icon

Table 5 Conversion Factor f 1 for Different Average Luminous Fluxes Φ ¯ e inside the Sphere from the External Lamps

Tables Icon

Table 6 Luminous Fluxes of Three Lamps in the 100–400-lm Range Measured by the Absolute Sphere and by a Traditional Ulbricht Sphere Calibrated with Respect to the IEN Goniophotometer

Tables Icon

Table 7 Luminous Fluxes of Six Standard Lamps Measured by the Absolute Sphere and the Goniophotometer

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E = ρ Φ 4 π r 2 ( 1 ρ ) ,
Φ = Φ e Y Y e ,
E a = I υ d 2 ,
Φ = I υ A a d 2 Y Y e = f Y ,
{ x 2 + y 2 + z 2 = r 2 , ( x x 0 ) 2 + ( z z 0 ) 2 = k ( y y 0 ) 2 ,
x = 1 + k 2 x 0 y 2 + k y 0 x 0 y + 1 2 r 2 + x 0 2 k y 0 2 x 0 .
F 1 2 = 1 2 { X [ X 2 4 ( R 2 R 1 ) 2 ] 1 / 2 } ,
X = 1 + 1 + R 2 2 R 1 2 .
f g = d 2 r 1 2 F 1 2 .
Φ = R 2 ϕ = 0 2 π θ = 0 π E ( θ , ϕ ) sin θ d ϕ ,
f i = A i d i 2 I L Y L , i = 1 , 2 ,

Metrics