Abstract

The efficiency of a wave-front-dividing interferometer with circular symmetric sets of reflectors is studied and compared with that of a lamellar grating. The circular-reflector interferometer shows more efficient modulation over larger spectral regions in the far IR than the lamellar grating does. In contrast to Michelson and Martin–Puplett interferometers no beam splitters are employed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Vanasse, J. Strong, “Applications of Fourier transformations in optics: interferometric spectroscopy,” in Concepts of Classical Optics, J. Strong, ed. (Freeman, San Francisco, Calif, 1958), Chap. F, pp. 419–433.
  2. K. D. Möller, “Wavefront dividing interferometer for the far infrared,” Infrared Phys. 32, 321–331 (1991).
    [CrossRef]
  3. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 15, pp. 200–230.
  4. S. Morley, “Die Bestimmung der dielektrischen Funktion hochreflektierender Materialen,” Ph.D. thesis (Rheinisch-Westfahlische Technische Hochschule, Aachen, Germany, 1993), p. 24.
  5. K. D. Möller, D. P. Siddons, C. J. Hirschmugl, D. Scardino, P. Petrone, D. Carlson, G. P. Williams, “Two-mirror wave-front-dividing interferometer for infrared synchrotron radiation,” Appl. Opt. 30, 4297–4301 (1991).
    [CrossRef] [PubMed]

1991 (2)

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 15, pp. 200–230.

Carlson, D.

Hirschmugl, C. J.

Möller, K. D.

Morley, S.

S. Morley, “Die Bestimmung der dielektrischen Funktion hochreflektierender Materialen,” Ph.D. thesis (Rheinisch-Westfahlische Technische Hochschule, Aachen, Germany, 1993), p. 24.

Petrone, P.

Scardino, D.

Siddons, D. P.

Strong, J.

G. A. Vanasse, J. Strong, “Applications of Fourier transformations in optics: interferometric spectroscopy,” in Concepts of Classical Optics, J. Strong, ed. (Freeman, San Francisco, Calif, 1958), Chap. F, pp. 419–433.

Vanasse, G. A.

G. A. Vanasse, J. Strong, “Applications of Fourier transformations in optics: interferometric spectroscopy,” in Concepts of Classical Optics, J. Strong, ed. (Freeman, San Francisco, Calif, 1958), Chap. F, pp. 419–433.

Williams, G. P.

Appl. Opt. (1)

Infrared Phys. (1)

K. D. Möller, “Wavefront dividing interferometer for the far infrared,” Infrared Phys. 32, 321–331 (1991).
[CrossRef]

Other (3)

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 15, pp. 200–230.

S. Morley, “Die Bestimmung der dielektrischen Funktion hochreflektierender Materialen,” Ph.D. thesis (Rheinisch-Westfahlische Technische Hochschule, Aachen, Germany, 1993), p. 24.

G. A. Vanasse, J. Strong, “Applications of Fourier transformations in optics: interferometric spectroscopy,” in Concepts of Classical Optics, J. Strong, ed. (Freeman, San Francisco, Calif, 1958), Chap. F, pp. 419–433.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the circular-reflector interferometer.

Fig. 2
Fig. 2

Spectrum of water vapor in the 15–80-cm−1 spectral region with a nominal resolution of 0.1 cm−1.

Fig. 3
Fig. 3

Normalized intensity of constructive and destructive interference for d = 8 mm, a = 16 mm, λ = 1 mm, and N = 10.

Fig. 4
Fig. 4

Diffraction pattern of the circular-reflector interferometer with Fresnel zone plate geometry: (a) constructive interference, (b) destructive interference.

Fig. 5
Fig. 5

Diffraction pattern for destructive interference of a circular-reflector interferometer with ring reflectors of equal width.

Fig. 6
Fig. 6

Intensity of the circular-reflector interferometer at the exit aperture for entrance and exit apertures of 6-mm diameter and for 100 cm−1: (a) constructive interference, (b) destructive interference.

Fig. 7
Fig. 7

Intensity of the circular-reflector interferometer at the exit aperture for entrance and exit apertures of 6-mm diameter and for 10 cm−1: (a) constructive interference, (b) destructive interference.

Fig. 8
Fig. 8

Plot of ɛ for circular-reflector and lamellar-grating interferometers. The lamellar grating has slit widths of 3, 6, and 9 mm; in the circular-reflector interferometer the diameters of the round apertures are 3, 6, and 9 mm.

Tables (2)

Tables Icon

Table 1 Comparison of Calculated and Measured Values of ɛ for Three Different Openings and Two Frequency Ranges

Tables Icon

Table 2 Comparison of Calculated ɛ Values for an Ideal Circular-Reflector Interferometer and a Circular-Reflector Interferometer with Imperfections in the Alignment of the Mirrors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = { sin [ ( π d λ ) sin ( θ ) ] sin [ ( π a λ ) N sin ( θ ) ] N sin [ ( π d λ ) sin ( θ ) ] sin [ ( π a λ ) sin ( θ ) ] cos [ ( π d λ ) sin ( θ ) + φ ] } 2 ,
I = 4 sin 2 φ 2 [ ( a 1 ) ( a 2 ) ( a n 2 ) + ( a n 1 ) ] [ ( a 1 ) ( a n 2 ) + ( a n 1 ) ( a n ) ] + ( a n ) 2 ,
( a n ) = 2 π a n 2 J 1 ( 2 π a n R λ X ) 2 π a 1 R λ X

Metrics