Abstract

We describe calculations of the sensitivity of CCD’s to soft x rays incident at grazing angles. Soft-x-ray spectrometers based on a Rowland-circle geometry have a focal plane and hence detector surface at grazing incidence to the soft x rays. We model the penetration of the grazing-incidence soft x rays to the sensitive region of the CCD and predict the charge-collection efficiency as a function of wavelength. The results show significant advantages over microchannel plate intensified detection.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Stern, L. Shing, M. M. Blouke, “Quantum efficiency measurements and modeling of ion-implanted, laser annealed charge-coupled devices: x-ray, extreme-ultraviolet, ultraviolet, and optical data,” Appl. Opt. 33, 2521–2533 (1994).
    [CrossRef] [PubMed]
  2. T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).
  3. J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
    [CrossRef]
  4. A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
    [CrossRef] [PubMed]
  5. W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
    [CrossRef] [PubMed]
  6. R. J. Schumacher, W. R. Hunter, “Thin aluminum filters for use on the Apollo Telescope Mount XUV spectrographs,” Appl. Opt. 16, 904–908 (1977).
    [PubMed]
  7. A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
    [CrossRef]
  8. J. G. Timothy, “Curved-channel microchannel array plates,” Rev. Sci. Instrum. 52, 1131–1142 (1981).
    [CrossRef]
  9. Oxford Research Group, 5737 Clinton Avenue, Richmond, Calif. 94805.
  10. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
    [CrossRef]
  11. Model SI003, Scientific Imaging Technologies, Inc., Beaverton, Ore.
  12. J. L. Wiza, “Microchannel plate detectors,” Nucl. Instrum. Methods 162, 587–601 (1979).
    [CrossRef]
  13. R. F. Malina, Ph.D. dissertation (University of California, Berkeley, Calif., 1979); control number 8014793, University Microfilms International, P.O. Box 1764, Ann Arbor, Mich. 48106.

1995 (1)

A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
[CrossRef]

1994 (1)

1993 (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
[CrossRef]

1988 (1)

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

1987 (1)

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

1981 (2)

A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
[CrossRef] [PubMed]

J. G. Timothy, “Curved-channel microchannel array plates,” Rev. Sci. Instrum. 52, 1131–1142 (1981).
[CrossRef]

1979 (1)

J. L. Wiza, “Microchannel plate detectors,” Nucl. Instrum. Methods 162, 587–601 (1979).
[CrossRef]

1977 (1)

Behring, W. E.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Blouke, M. M.

Brown, C. M.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Conder, A. D.

A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
[CrossRef]

Dunn, J. D.

A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
[CrossRef]

Feldman, U.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Finkenthal, M.

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

Garifo, L.

A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
[CrossRef] [PubMed]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
[CrossRef]

Hunter, W. R.

Malina, R. F.

R. F. Malina, Ph.D. dissertation (University of California, Berkeley, Calif., 1979); control number 8014793, University Microfilms International, P.O. Box 1764, Ann Arbor, Mich. 48106.

Malvezzi, A. M.

A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
[CrossRef] [PubMed]

Marshall, F. J.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Meyer-Ilse, W.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Richardson, M. C.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Rothweiler, D.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Scholze, F.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Schumacher, R. J.

Schwob, J. L.

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

Seely, J. F.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Shing, L.

Stern, R. A.

Suckewer, S.

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

Timothy, J. G.

J. G. Timothy, “Curved-channel microchannel array plates,” Rev. Sci. Instrum. 52, 1131–1142 (1981).
[CrossRef]

Tondello, G.

A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
[CrossRef] [PubMed]

Tusche, A.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Underwood, J. H.

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Wilhein, T.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Wiza, J. L.

J. L. Wiza, “Microchannel plate detectors,” Nucl. Instrum. Methods 162, 587–601 (1979).
[CrossRef]

Wouters, A. W.

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

Young, B. K. F.

A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
[CrossRef]

Appl. Opt. (2)

A. M. Malvezzi, L. Garifo, G. Tondello, “Grazing-incidence high-resolution stigmatic spectrograph with two optical elements,” Appl. Opt. 20, 2560–2565 (1981).
[CrossRef] [PubMed]

W. E. Behring, J. H. Underwood, C. M. Brown, U. Feldman, J. F. Seely, F. J. Marshall, M. C. Richardson, “Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas,” Appl. Opt. 27, 2762–2767 (1988).
[CrossRef] [PubMed]

Appl. Opt. (2)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1, 92,” At. Data Nucl. Data Tables 54, No. 2, 181–342 (1993).
[CrossRef]

Nucl. Instrum. Methods (1)

J. L. Wiza, “Microchannel plate detectors,” Nucl. Instrum. Methods 162, 587–601 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

J. L. Schwob, A. W. Wouters, S. Suckewer, M. Finkenthal, “High resolution duo-multichannel soft-x-ray spectrometer for tokomak plasma diagnostics,” Rev. Sci. Instrum. 58, 1601–1615 (1987).
[CrossRef]

Rev. Sci. Instrum. (2)

A. D. Conder, J. D. Dunn, B. K. F. Young, “Miniature, vacuum compatible 1024 × 1024 charge-coupled device camera for x-ray, ultraviolet, or optical imaging,” Rev. Sci. Instrum. 66, 709–711 (1995).
[CrossRef]

J. G. Timothy, “Curved-channel microchannel array plates,” Rev. Sci. Instrum. 52, 1131–1142 (1981).
[CrossRef]

Other (4)

Oxford Research Group, 5737 Clinton Avenue, Richmond, Calif. 94805.

T. Wilhein, D. Rothweiler, A. Tusche, F. Scholze, W. Meyer-Ilse, “Thinned, backilluminated CCD’s for x-ray microscopy,” in X-Ray Microscopy IV, Proceedings of the International Conference on X-Ray Microscopy, V. V. Aristov, A. I. Erko, eds. (Institute of Microelectronics Technology, Chernogolovka, Russia, 1994).

Model SI003, Scientific Imaging Technologies, Inc., Beaverton, Ore.

R. F. Malina, Ph.D. dissertation (University of California, Berkeley, Calif., 1979); control number 8014793, University Microfilms International, P.O. Box 1764, Ann Arbor, Mich. 48106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Angle of incidence at the detector for a grazing-incidence spectrometer with a grating radius of 2 m and a grating groove density of 600 and 2400 lines/mm and a grating angle of incidence of 1.5°.

Fig. 2
Fig. 2

Transmission (including reflection losses) of a SiO2 filter 50 Å thick at the incidence angles at the detector of Fig. 1.

Fig. 3
Fig. 3

Detection efficiency [defined by Eq. (1)] for gratings of 2400 and 600 lines/mm.

Fig. 4
Fig. 4

Count rate per incident photon for gratings of 2400 and 600 lines/mm (see text).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D E = T λ { η 0 [ 1 exp ( z 0 ) ] + ( 1 η 0 z 0 ) × [ 1 ( 1 + z 0 ) exp ( z 0 ) ] + exp ( z 0 ) } .
λ ( Å ) = ( 10 7 / N ) [ cos θ cos ( x / R ) ] .

Metrics