Abstract

We have applied a line UV Raman, Rayleigh, and laser-induced predissociation fluorescence technique for measurement of turbulent hydrocarbon flames. The species concentration of CO2, O2, CO, N2, CH4, H2O, OH, and H2 and the temperature are measured instantaneously and simultaneously along a line of 11.4 mm, from which the gradients with respect to mixture fraction and spatial direction are obtained. The technique has been successfully tested in a laminar premixed stoichiometric methane flame and a laminar hydrogen diffusion flame. In addition the technique has been tested in a highly turbulent rich premixed methane flame. The data show that the technique can be used to provide instantaneous measurements of local profiles that describe the local flame structure in highly turbulent flames.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 5, p. 209.
  2. S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Systems,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), p. 1149.
  3. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
    [Crossref]
  4. R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
    [Crossref]
  5. J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
    [Crossref] [PubMed]
  6. T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
    [Crossref]
  7. A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
    [Crossref]
  8. A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
    [Crossref]
  9. R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), p. 1677.
  10. M. B. Long, B. Yip, “Measurements of three-dimensional concentrations in turbulent jets and flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988, p. 701; B. Yip, M. B. Long, “Instantaneous planar measurement of the complete three-dimensonal scalar gradient in a turbulent jet,” Opt. Lett. 11, 64–66 (1986); B. Yip, D. C. Fourguette, M. B. Long, “Three-dimensional gas concentration and gradient measurements in a photoacoustically perturbed jet,” Appl. Opt. 25, 3919–3923 (1986).
    [Crossref] [PubMed]
  11. M. S. Mansour, “Two-plane two-dimensional Rayleigh thermometry technique for turbulent combustion,” Opt. Lett. 18, 537–540 (1993).
    [Crossref] [PubMed]
  12. L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
    [Crossref]
  13. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single-pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
    [Crossref] [PubMed]
  14. S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
    [PubMed]
  15. W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 32, 907–918 (1993).
    [Crossref] [PubMed]
  16. G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
    [Crossref]
  17. J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
    [Crossref]
  18. P. Andresen, A. Bath, W. Groeger, H. W. Luelf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
    [Crossref] [PubMed]
  19. R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
    [Crossref]
  20. M. S. Mansour, “Studies in turbulent hydrocarbon flames in a reverse flow reactor,” Ph.D. dissertation (Sydney University, Sydney, Australia, 1990).
  21. R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), p. 1489.
    [Crossref]
  22. J. Bartels, ed. Landolt-Borstein Tables of Optical Constants (Springer-VerlagBerlin, 1962), Vol. 2, part 8.
  23. P. Andresen, G. Meijer, H. Schulter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [Crossref] [PubMed]
  24. N. Peters, Institut für Technische Mechanik, Aachen, Germany (personal communication, 1994).
  25. R. W. Pitz, S. P. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames, to stretched laminar flamelets,” presented at AIAA/SAE/ASME/ASEE 28th Joint Propulation Conference and Exhibit, paper No. AIAA-92-3349 (1992).
  26. M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
    [Crossref]
  27. M. S. Mansour, Y.-C. Chen, N. Peters, “The reaction zone structure of turbulent premixed methane-helium-air flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), p. 461.
    [Crossref]
  28. M. S. Mansour, Y-C. Chen, N. Peters, “Line Raman, Rayleigh, LIPF measurements in partially premixed flames of methane,” presented at International Congress on Fluid Dynamics and Propulsion, Cairo (American Society of Mechanical Engineers, New York, 1996).

1994 (2)

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[Crossref]

1993 (2)

1992 (2)

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[Crossref] [PubMed]

T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[Crossref]

1990 (7)

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
[Crossref]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single-pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
[Crossref] [PubMed]

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[Crossref]

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

P. Andresen, G. Meijer, H. Schulter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[Crossref] [PubMed]

M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
[Crossref]

1988 (1)

1987 (2)

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
[Crossref]

1979 (1)

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Andresen, P.

Bahadori, M. Y.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Systems,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), p. 1149.

Barlow, R. W.

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

Bath, A.

Beuschausen, V.

G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[Crossref]

Bilger, R. W.

M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
[Crossref]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
[Crossref]

Bowling, J. M.

Bridoux, M.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Brown, T. M.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

R. W. Pitz, S. P. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames, to stretched laminar flamelets,” presented at AIAA/SAE/ASME/ASEE 28th Joint Propulation Conference and Exhibit, paper No. AIAA-92-3349 (1992).

Chen, J.-Y.

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

Chen, Y.-C.

M. S. Mansour, Y.-C. Chen, N. Peters, “The reaction zone structure of turbulent premixed methane-helium-air flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), p. 461.
[Crossref]

Chen, Y-C.

M. S. Mansour, Y-C. Chen, N. Peters, “Line Raman, Rayleigh, LIPF measurements in partially premixed flames of methane,” presented at International Congress on Fluid Dynamics and Propulsion, Cairo (American Society of Mechanical Engineers, New York, 1996).

Cheng, T.-S.

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[Crossref] [PubMed]

T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[Crossref]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single-pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
[Crossref] [PubMed]

Crunelle-Cras, M.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Delhaye, M.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Dibble, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
[Crossref]

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
[Crossref]

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
[Crossref]

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), p. 1489.
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 5, p. 209.

Grase, F.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Groeger, W.

Grünefeld, G.

G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[Crossref]

W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 32, 907–918 (1993).
[Crossref] [PubMed]

Hanson, R. K.

R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), p. 1677.

Hentschel, W.

G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[Crossref]

P. Andresen, G. Meijer, H. Schulter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[Crossref] [PubMed]

Hollenbach, R. E.

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), p. 1489.
[Crossref]

Hüwel, L.

Koch, A.

Long, M. B.

M. B. Long, B. Yip, “Measurements of three-dimensional concentrations in turbulent jets and flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988, p. 701; B. Yip, M. B. Long, “Instantaneous planar measurement of the complete three-dimensonal scalar gradient in a turbulent jet,” Opt. Lett. 11, 64–66 (1986); B. Yip, D. C. Fourguette, M. B. Long, “Three-dimensional gas concentration and gradient measurements in a photoacoustically perturbed jet,” Appl. Opt. 25, 3919–3923 (1986).
[Crossref] [PubMed]

Lucht, R. P.

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

Lucquin, M.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Luelf, H. W.

Mansour, M. S.

M. S. Mansour, “Two-plane two-dimensional Rayleigh thermometry technique for turbulent combustion,” Opt. Lett. 18, 537–540 (1993).
[Crossref] [PubMed]

M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
[Crossref]

M. S. Mansour, Y.-C. Chen, N. Peters, “The reaction zone structure of turbulent premixed methane-helium-air flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), p. 461.
[Crossref]

M. S. Mansour, “Studies in turbulent hydrocarbon flames in a reverse flow reactor,” Ph.D. dissertation (Sydney University, Sydney, Australia, 1990).

M. S. Mansour, Y-C. Chen, N. Peters, “Line Raman, Rayleigh, LIPF measurements in partially premixed flames of methane,” presented at International Congress on Fluid Dynamics and Propulsion, Cairo (American Society of Mechanical Engineers, New York, 1996).

Masri, A. R.

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
[Crossref]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
[Crossref]

Meijer, G.

Nandula, S. P.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

R. W. Pitz, S. P. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames, to stretched laminar flamelets,” presented at AIAA/SAE/ASME/ASEE 28th Joint Propulation Conference and Exhibit, paper No. AIAA-92-3349 (1992).

Oppermann, W.

Penner, S. S.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Systems,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), p. 1149.

Peters, N.

N. Peters, Institut für Technische Mechanik, Aachen, Germany (personal communication, 1994).

M. S. Mansour, Y-C. Chen, N. Peters, “Line Raman, Rayleigh, LIPF measurements in partially premixed flames of methane,” presented at International Congress on Fluid Dynamics and Propulsion, Cairo (American Society of Mechanical Engineers, New York, 1996).

M. S. Mansour, Y.-C. Chen, N. Peters, “The reaction zone structure of turbulent premixed methane-helium-air flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), p. 461.
[Crossref]

Pitz, R. W.

S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[Crossref]

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[Crossref] [PubMed]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single-pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
[Crossref] [PubMed]

R. W. Pitz, S. P. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames, to stretched laminar flamelets,” presented at AIAA/SAE/ASME/ASEE 28th Joint Propulation Conference and Exhibit, paper No. AIAA-92-3349 (1992).

Reckers, W.

Rothe, E.

Schulter, H.

Shirley, J. A.

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[Crossref]

Sochet, L. R.

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

Staner, S. H.

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

ter Meulen, J. J.

Voges, H.

Wang, C. P.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Systems,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), p. 1149.

Wehrmeyer, J. A.

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[Crossref] [PubMed]

T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[Crossref]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single-pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
[Crossref] [PubMed]

Yip, B.

M. B. Long, B. Yip, “Measurements of three-dimensional concentrations in turbulent jets and flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988, p. 701; B. Yip, M. B. Long, “Instantaneous planar measurement of the complete three-dimensonal scalar gradient in a turbulent jet,” Opt. Lett. 11, 64–66 (1986); B. Yip, D. C. Fourguette, M. B. Long, “Three-dimensional gas concentration and gradient measurements in a photoacoustically perturbed jet,” Appl. Opt. 25, 3919–3923 (1986).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (3)

G. Grünefeld, V. Beuschausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[Crossref]

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[Crossref]

R. W. Dibble, S. H. Staner, A. R. Masri, R. W. Barlow, “An improved method of data acquisition and reduction for laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990).
[Crossref]

Combust. Flame (7)

L. R. Sochet, M. Lucquin, M. Bridoux, M. Crunelle-Cras, F. Grase, M. Delhaye, “Use of multichannel pulsed Raman spectroscopy as a diagnostic technique in flames,” Combust. Flame 36, 109–116 (1979).
[Crossref]

T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurements in a lifted hyrogen diffusion flames,” Combust. Flame 91, 323–345 (1992); T.-S. Cheng, “Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames,” Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1991); T.-S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurements of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame,” Combust. Flame 99, 157–173 (1994).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “Turbulent nonpremixed flames of methane near extinction: mean structure from Raman measurements,” Combust. Flame 71, 245–266 (1987).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “The local structure of turbulent nonpremixed flames near extinction,” Combust. Flame 81, 260–276 (1990).
[Crossref]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[Crossref]

R. W. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effects of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990).
[Crossref]

M. S. Mansour, R. W. Bilger, R. W. Dibble, “Spatial averaging effects in Raman/Rayleigh measurements in a turbulent flame,” Combust. Flame 82, 411–425 (1990).
[Crossref]

Opt. Lett. (2)

Other (11)

M. S. Mansour, “Studies in turbulent hydrocarbon flames in a reverse flow reactor,” Ph.D. dissertation (Sydney University, Sydney, Australia, 1990).

R. W. Dibble, R. E. Hollenbach, “Laser Rayleigh thermometry in turbulent flames,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), p. 1489.
[Crossref]

J. Bartels, ed. Landolt-Borstein Tables of Optical Constants (Springer-VerlagBerlin, 1962), Vol. 2, part 8.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 5, p. 209.

S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Systems,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), p. 1149.

R. K. Hanson, “Combustion diagnostics: planar imaging techniques,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), p. 1677.

M. B. Long, B. Yip, “Measurements of three-dimensional concentrations in turbulent jets and flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988, p. 701; B. Yip, M. B. Long, “Instantaneous planar measurement of the complete three-dimensonal scalar gradient in a turbulent jet,” Opt. Lett. 11, 64–66 (1986); B. Yip, D. C. Fourguette, M. B. Long, “Three-dimensional gas concentration and gradient measurements in a photoacoustically perturbed jet,” Appl. Opt. 25, 3919–3923 (1986).
[Crossref] [PubMed]

M. S. Mansour, Y.-C. Chen, N. Peters, “The reaction zone structure of turbulent premixed methane-helium-air flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), p. 461.
[Crossref]

M. S. Mansour, Y-C. Chen, N. Peters, “Line Raman, Rayleigh, LIPF measurements in partially premixed flames of methane,” presented at International Congress on Fluid Dynamics and Propulsion, Cairo (American Society of Mechanical Engineers, New York, 1996).

N. Peters, Institut für Technische Mechanik, Aachen, Germany (personal communication, 1994).

R. W. Pitz, S. P. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames, to stretched laminar flamelets,” presented at AIAA/SAE/ASME/ASEE 28th Joint Propulation Conference and Exhibit, paper No. AIAA-92-3349 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the line Rama, Rayleigh, LIPF technique.

Fig. 2
Fig. 2

Raman–LIPF spectra in cold mixtures of (a) 9% H2 by volume in dry air, (b) 45% CO2 by volume in dry air, (c) stoichiometric methane–air, (d) a calibration flame of 5% O2 by volume in stoichiometric methane–air, (e) a calibration rich methane–air flame at ϕ = 1.4.

Fig. 3
Fig. 3

Single-shot image of the raw Rayleigh line (top image) and binned Raman and LIPF spectrum (bottom image) in a laminar hydrogen diffusion flame. These are gray-scale images, the lighter gray represents the maximum.

Fig. 4
Fig. 4

Mean temperature and species mass fraction profiles versus fraction mixture in a laminar hydrogen diffusion flame. The experimental data (points) are compared with adiabatic equilibrium (solid curves) and flamelet predictions24 (dashed curves).

Fig. 5
Fig. 5

Single-shot image of the raw Rayleigh line (top image) and binned Raman and LIPF spectrum (bottom image) in a laminar premixed methane flame at ϕ = 1.0. These are gray-scale images, the lighter gray represents the maximum.

Fig. 6
Fig. 6

Mean species mass fraction profiles versus temperature as a progressive variable in a laminar premixed stoichiometric methane flame. The experimental data (points) are compard with predictions (curves).24

Fig. 7
Fig. 7

Single-shot image of the raw Rayleigh line (top image) and binned Raman and LIPF spectrum (bottom image) in a turbulent partially premixed methane flame at ϕ = 2.0. These are grayscale images, the lighter gray represents the maximum.

Fig. 8
Fig. 8

Radial profiles of the mixture fraction, temperature, and species mass fractions at two heights of X/D = 4.5 and 8.5. The data are presented as (a) mean profiles and (b) rms profiles of the fluctuations. The radial distance r is normalized by the nozzle radius R j . The filled symbols and solid curves represent the position X/D = 4.5 whereas position 8.5 is represented by the open symbols and dashed curves.

Tables (2)

Tables Icon

Table 1 Correction Factors C Fi 1- i 2, in Percent for the Correction on Species i1 from the Interference of Species i2

Tables Icon

Table 2 Relative Standard Deviations in Percent of the Raman–Rayleigh Calibration Factors

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T = C Ray × σ m / I Ray ,
[ N ] i = X i N A T o / ( V o T ) ,
[ N ] i = ( X i / T ) × 7 . 335 × 10 21 molecules / cm 3 .
T ND = 7 . 335 × 10 21 / Σ [ N ] i K .
IR i = K i I l f i ( T ) [ N ] i ,
[ N ] i = C i ( T ) × R i .
X i = [ N ] i / Σ [ N ] i , Y i = X i ( W i / W m ) ,
ξ = { ( 2 Y c / W c ) + ( 0 . 5 Y H / W H ) + [ ( Y o , o Y o ) / W o ] } / [ ( 2 Y c , f / W c ) + ( 0 . 5 Y H , f / W H ) + ( Y o , o / W o ) ] ,

Metrics