Abstract

The governing equations are developed for the marine asymptotic daylight field in the scalar approximation, including the effects of inelastic processes—Raman scattering and chromophoric dissolved organic matter fluorescence. The governing equations are solved numerically and compared with Monte Carlo simulations. It is found that these solutions are the actual radiance distributions approached by the asymptotic field in the Monte Carlo simulations. Sample solutions are provided to show the sensitivity of the light field to the various parameters of the medium. For certain values of the parameters, inclusion of inelastic processes can drastically alter the radiance distribution, e.g., from a near-Dirac delta function in the absence of inelastic processes to a near-isotropic distribution in their presence. The results suggest that in a real ocean, the asymptotic (and near-asymptotic) radiance distribution will tend to become more uniform as the wavelength increases beyond ~500 nm. Finally, it is shown that even for depths far from the asymptotic regime, the radiance distribution of the inelastic component of the light field can be well approximated by the asymptotic theory developed here for inelastic processes. Two exact analytical solutions to the governing equations are also provided.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation, and first results

Marc Schroeder, Hans Barth, and Rainer Reuter
Appl. Opt. 42(21) 4244-4260 (2003)

Scattering and absorption effects on asymptotic light fields in seawater

Michael Twardowski and Alberto Tonizzo
Opt. Express 25(15) 18122-18130 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription