Abstract

A novel photoacoustic (PA) system that uses a continuously tunable high-pressure CO2 laser as radiation source is presented. A minimum detectable absorption coefficient of 10−6 cm−1 that is limited mainly by the desorption of absorbing species from the cell walls and by residual electromagnetic perturbation of the microphone electronics has currently been achieved. Although a linear dependence of the PA signal on the gas concentration has been observed over 4 orders of magnitude, the dependence on energy exhibits a nonlinear behavior owing to saturation effects in excellent agreement with a theoretical model. The calibration of the laser wavelength is performed by PA measurements on low-pressure CO2 gas, resulting in an absolute accuracy of ±10−2 cm−1. PA spectra are presented for carbon dioxide (CO2), ammonia (NH3), ozone (O3), ethylene (C2H4), methanol (CH3OH), ethanol (C2H5OH), and toluene (C7H8) in large parts of the laser emission range. The expected improvement in detection selectivity compared with that of studies with line-tunable CO2 lasers is demonstrated with the aid of multicomponent trace-gas mixtures prepared with a gas-mixing unit. Good agreement is obtained between the known concentrations and the concentrations calculated on the basis of a fit with calibration spectra. Finally, the perspectives of the system concerning air analyses are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  2. A. Thöny, M. W. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
    [CrossRef]
  3. M. W. Sigrist, ed., Air Monitoring by Spectroscopic Techniques, Vol. 127 of Wiley Chemical Analysis Series (Wiley, New York, 1994).
  4. A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
    [CrossRef]
  5. M. W. Sigrist, “Environmental and chemical trace gas analysis by photoacoustic methods,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 7.
  6. F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
    [CrossRef]
  7. F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1988).
  8. F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
    [CrossRef]
  9. L. G. Rosengren, “Optimal optoacoustic detector design,” Appl. Opt. 14, 1960–1976 (1975).
    [CrossRef] [PubMed]
  10. J. Henningsen, A. Olafsson, M. Hammerich, “Trace detection with infrared gas lasers,” in Applied Laser Spectroscopy, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), pp. 403–416.
    [CrossRef]
  11. A. Olafsson, M. Hammerich, J. Henningsen, “Photoacoustic spectroscopy of C2H4 with a tunable waveguide CO2 laser,” Appl. Opt. 31, 2657–2668 (1992).
    [CrossRef] [PubMed]
  12. P. Repond, “Photoacoustic spectroscopy on gases with a continuously tunable high pressure CO2 laser,” Ph.D. dissertation 11047 (ETH Zurich, Zurich, Switzerland, 1995).
  13. P. Repond, M. W. Sigrist, “Continuously tunable high pressure CO2 laser for spectroscopic studies on trace gases,” IEEE J. Quantum Electron., to be published.
  14. P. Hess, “Principles of photoacoustic and photothermal detection in gases,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 4.
  15. K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
    [CrossRef]
  16. N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
    [CrossRef]
  17. P. Hess, “Resonant photoacoustic spectroscopy,” Top. Curr. Chem 111, 1–32 (1983).
    [CrossRef]
  18. M. Fiedler, P. Hess, “Laser excitation of acoustic modes in cylindrical and spherical resonators: theory and applications,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 5.
    [CrossRef]
  19. D. Pugh, “Theoretical foundation of photoacoustics in the frequency and time domains,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 2.
    [CrossRef]
  20. E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
    [CrossRef]
  21. J. Schuurman, G. H. Wegdam, “Vibrational energy relaxation in CH3X molecules,” Chem. Phys. Lett. 73, 429–432 (1980).
    [CrossRef]
  22. R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
    [CrossRef]
  23. J. Wrobel, M. Vala, “Time-resolved optoacoustic spectroscopy,” Chem. Phys. 33, 93–105 (1978).
    [CrossRef]
  24. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acustica 80, 339–351 (1994).
  25. K. M. Beck, R. J. Gordon, “Theory and application of time-resolved optoacoustics in gases,” J. Chem. Phys. 89, 5560–5567 (1988).
    [CrossRef]
  26. M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.
  27. S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
    [CrossRef]
  28. A. Miklós, A. Lörincz, “Windowless resonant acoustic chamber for laser-photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
    [CrossRef]
  29. J. M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
    [CrossRef]
  30. G. J. Diebold, “Application of the photoacoustic effect to studies of gas phase chemical kinetics,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 6.
    [CrossRef]
  31. G. R. Long, S. E. Bialkowski, “Error reduction in pulsed laser photothermal deflection spectrometry,” Anal. Chem. 58, 80–86 (1986).
    [CrossRef] [PubMed]
  32. S. E. Bialkowski, “Accounting for absorption saturation effects in pulsed infrared laser-excited photothermal spectroscopy,” Appl. Opt. 32, 3177–3189 (1993).
    [CrossRef] [PubMed]
  33. P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
    [CrossRef]
  34. S. E. Bialkowski, G. R. Long, “Quantitative discrimination of gas-phase species based on single-wavelength nonlinear intensity dependent pulsed IR laser excited photothermal deflection signals,” Anal. Chem. 59, 873–879 (1987).
    [CrossRef]
  35. D. M. Cox, “Pulsed optoacoustic detection of multiple photon excitation in molecules,” Opt. Commun. 24, 336–340 (1978).
    [CrossRef]
  36. V. M. Akulin, N. V. Karlov, Intense Resonant Interactions in Quantum Electronics (Springer-Verlag, Berlin, 1992), Lecture 6.
    [CrossRef]
  37. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  38. R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
    [CrossRef]
  39. L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
    [CrossRef] [PubMed]
  40. G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
    [CrossRef]
  41. P. K. Cheo, Z. Chu, L. Chen, Y. Zhou, “Applications of a tunable CO2 sideband laser for high-resolution spectroscopic measurements of atmospheric gases,” Appl. Opt. 32, 836–841 (1993).
    [CrossRef] [PubMed]
  42. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  43. M. A. H. Smith, C. P. Rinsland, “Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 μm,” J. Opt. Soc. Am. B 5, 585–592 (1988).
    [CrossRef]
  44. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Florida, 1991).
  45. J. M. Hollas, High Resolution Spectroscopy (Butterworth, London, 1982).
  46. I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
    [CrossRef]
  47. R. A. Nyquist, The Interpretation of Vapor-Phase Infrared Spectra, Sadtler Laboratories, (Heyden, London, 1984), Vol. 1, p. 120.
  48. J. O. Henningsen, “Molecular spectroscopy by far-infrared laser emission,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 5, Chap. 2.
  49. M. A. Leugers, C. J. Seliskar, “The rotation-torsion contour of the 2668 Å origin band of toluene. High-resolution 295 K absorption spectrum,” J. Mol. Spectrosc. 91, 150–164 (1982).
    [CrossRef]
  50. J. R. Scherer, “Group vibrations of substituted benzenes-II. Planar CH deformations and ring stretching and bending modes of chlorinated benzenes,” Spectrochim. Acta 21, 321– 339 (1965).
    [CrossRef]
  51. N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, 1990).
  52. J. A. Draeger, “The methylbenzenes-I. Vapor-phase vibrational fundamentals, internal rotations and a modified valence force field,” Spectrochim. Acta 41A, 607–627 (1985).
  53. Y. Xie, J. E. Boggs, “The computed force constants and vibrational spectra of toluene,” J. Comput. Chem. 7, 158–164 (1986).
    [CrossRef]
  54. J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
    [CrossRef]
  55. S. M. Beck, “Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection,” Appl. Opt. 24, 1761–1763 (1985).
    [CrossRef] [PubMed]
  56. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
    [CrossRef] [PubMed]
  57. P. L. Meyer, “Air-pollution monitoring with a mobile CO2-laser photoacoustic system,” Ph.D. dissertation 8651 (ETH Zurich, Zurich, 1988).
  58. I. Carrer, L. Fiorina, E. Zanzottera, “High sensitivity cell for pulsed photoacoustic spectroscopy in gases and liquids,” in Photoacoustic and Photothermal Phenomena III, D. Bicanic, ed., Vol. 69 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1992), pp. 568–571.
  59. N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
    [CrossRef]

1995

A. Thöny, M. W. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

1994

J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
[CrossRef]

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acustica 80, 339–351 (1994).

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

1993

1992

A. Olafsson, M. Hammerich, J. Henningsen, “Photoacoustic spectroscopy of C2H4 with a tunable waveguide CO2 laser,” Appl. Opt. 31, 2657–2668 (1992).
[CrossRef] [PubMed]

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

1990

I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
[CrossRef] [PubMed]

1989

A. Miklós, A. Lörincz, “Windowless resonant acoustic chamber for laser-photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

1988

M. A. H. Smith, C. P. Rinsland, “Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 μm,” J. Opt. Soc. Am. B 5, 585–592 (1988).
[CrossRef]

K. M. Beck, R. J. Gordon, “Theory and application of time-resolved optoacoustics in gases,” J. Chem. Phys. 89, 5560–5567 (1988).
[CrossRef]

1987

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

S. E. Bialkowski, G. R. Long, “Quantitative discrimination of gas-phase species based on single-wavelength nonlinear intensity dependent pulsed IR laser excited photothermal deflection signals,” Anal. Chem. 59, 873–879 (1987).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

1986

L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
[CrossRef] [PubMed]

Y. Xie, J. E. Boggs, “The computed force constants and vibrational spectra of toluene,” J. Comput. Chem. 7, 158–164 (1986).
[CrossRef]

G. R. Long, S. E. Bialkowski, “Error reduction in pulsed laser photothermal deflection spectrometry,” Anal. Chem. 58, 80–86 (1986).
[CrossRef] [PubMed]

1985

K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
[CrossRef]

S. M. Beck, “Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection,” Appl. Opt. 24, 1761–1763 (1985).
[CrossRef] [PubMed]

J. A. Draeger, “The methylbenzenes-I. Vapor-phase vibrational fundamentals, internal rotations and a modified valence force field,” Spectrochim. Acta 41A, 607–627 (1985).

1984

N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
[CrossRef]

1983

P. Hess, “Resonant photoacoustic spectroscopy,” Top. Curr. Chem 111, 1–32 (1983).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

J. M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

1982

M. A. Leugers, C. J. Seliskar, “The rotation-torsion contour of the 2668 Å origin band of toluene. High-resolution 295 K absorption spectrum,” J. Mol. Spectrosc. 91, 150–164 (1982).
[CrossRef]

1981

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

1980

J. Schuurman, G. H. Wegdam, “Vibrational energy relaxation in CH3X molecules,” Chem. Phys. Lett. 73, 429–432 (1980).
[CrossRef]

1979

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
[CrossRef]

1978

J. Wrobel, M. Vala, “Time-resolved optoacoustic spectroscopy,” Chem. Phys. 33, 93–105 (1978).
[CrossRef]

D. M. Cox, “Pulsed optoacoustic detection of multiple photon excitation in molecules,” Opt. Commun. 24, 336–340 (1978).
[CrossRef]

1975

1965

J. R. Scherer, “Group vibrations of substituted benzenes-II. Planar CH deformations and ring stretching and bending modes of chlorinated benzenes,” Spectrochim. Acta 21, 321– 339 (1965).
[CrossRef]

Akulin, V. M.

V. M. Akulin, N. V. Karlov, Intense Resonant Interactions in Quantum Electronics (Springer-Verlag, Berlin, 1992), Lecture 6.
[CrossRef]

Alcock, A. J.

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

Angeli, G. Z.

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

Atkinson, G. H.

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Bailey, R. T.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

Barbe, A.

Beck, K. M.

K. M. Beck, R. J. Gordon, “Theory and application of time-resolved optoacoustics in gases,” J. Chem. Phys. 89, 5560–5567 (1988).
[CrossRef]

K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
[CrossRef]

Beck, S. M.

Bernegger, S.

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Bialkowski, S. E.

S. E. Bialkowski, “Accounting for absorption saturation effects in pulsed infrared laser-excited photothermal spectroscopy,” Appl. Opt. 32, 3177–3189 (1993).
[CrossRef] [PubMed]

S. E. Bialkowski, G. R. Long, “Quantitative discrimination of gas-phase species based on single-wavelength nonlinear intensity dependent pulsed IR laser excited photothermal deflection signals,” Anal. Chem. 59, 873–879 (1987).
[CrossRef]

G. R. Long, S. E. Bialkowski, “Error reduction in pulsed laser photothermal deflection spectrometry,” Anal. Chem. 58, 80–86 (1986).
[CrossRef] [PubMed]

Bicanic, D. D.

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

Bijnen, F. G. C.

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

Blanquet, G.

I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
[CrossRef]

Blom, C. W. P. M.

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

Boggs, J. E.

Y. Xie, J. E. Boggs, “The computed force constants and vibrational spectra of toluene,” J. Comput. Chem. 7, 158–164 (1986).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Bülow, J.

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Carrer, I.

I. Carrer, L. Fiorina, E. Zanzottera, “High sensitivity cell for pulsed photoacoustic spectroscopy in gases and liquids,” in Photoacoustic and Photothermal Phenomena III, D. Bicanic, ed., Vol. 69 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1992), pp. 568–571.

Cauuet, I.

I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
[CrossRef]

Chen, L.

Cheo, P. K.

Chris Benner, D.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Chu, Z.

Colthup, N. B.

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, 1990).

Cox, D. M.

D. M. Cox, “Pulsed optoacoustic detection of multiple photon excitation in molecules,” Opt. Commun. 24, 336–340 (1978).
[CrossRef]

Cruickshank, F. R.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

Cvijin, P. V.

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Daly, L. H.

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, 1990).

Davis, C. C.

N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
[CrossRef]

de Vries, H. S. M.

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

Diebold, G. J.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acustica 80, 339–351 (1994).

G. J. Diebold, “Application of the photoacoustic effect to studies of gas phase chemical kinetics,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 6.
[CrossRef]

Draeger, J. A.

J. A. Draeger, “The methylbenzenes-I. Vapor-phase vibrational fundamentals, internal rotations and a modified valence force field,” Spectrochim. Acta 41A, 607–627 (1985).

Fiedler, M.

M. Fiedler, P. Hess, “Laser excitation of acoustic modes in cylindrical and spherical resonators: theory and applications,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 5.
[CrossRef]

Fiorina, L.

I. Carrer, L. Fiorina, E. Zanzottera, “High sensitivity cell for pulsed photoacoustic spectroscopy in gases and liquids,” in Photoacoustic and Photothermal Phenomena III, D. Bicanic, ed., Vol. 69 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1992), pp. 568–571.

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Gelfand, J.

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

Gilmore, D. A.

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Gordon, R. J.

K. M. Beck, R. J. Gordon, “Theory and application of time-resolved optoacoustics in gases,” J. Chem. Phys. 89, 5560–5567 (1988).
[CrossRef]

K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
[CrossRef]

Guthrie, R.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

Hammerich, M.

J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
[CrossRef]

A. Olafsson, M. Hammerich, J. Henningsen, “Photoacoustic spectroscopy of C2H4 with a tunable waveguide CO2 laser,” Appl. Opt. 31, 2657–2668 (1992).
[CrossRef] [PubMed]

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

J. Henningsen, A. Olafsson, M. Hammerich, “Trace detection with infrared gas lasers,” in Applied Laser Spectroscopy, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), pp. 403–416.
[CrossRef]

Harren, F.

F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1988).

Harren, F. J. M.

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

Henningsen, J.

J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
[CrossRef]

A. Olafsson, M. Hammerich, J. Henningsen, “Photoacoustic spectroscopy of C2H4 with a tunable waveguide CO2 laser,” Appl. Opt. 31, 2657–2668 (1992).
[CrossRef] [PubMed]

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

J. Henningsen, A. Olafsson, M. Hammerich, “Trace detection with infrared gas lasers,” in Applied Laser Spectroscopy, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), pp. 403–416.
[CrossRef]

Henningsen, J. O.

J. O. Henningsen, “Molecular spectroscopy by far-infrared laser emission,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 5, Chap. 2.

Heritier, J. M.

J. M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Florida, 1991).

Hess, P.

P. Hess, “Resonant photoacoustic spectroscopy,” Top. Curr. Chem 111, 1–32 (1983).
[CrossRef]

P. Hess, “Principles of photoacoustic and photothermal detection in gases,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 4.

M. Fiedler, P. Hess, “Laser excitation of acoustic modes in cylindrical and spherical resonators: theory and applications,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 5.
[CrossRef]

Hollas, J. M.

J. M. Hollas, High Resolution Spectroscopy (Butterworth, London, 1982).

Husson, N.

Ioli, N.

N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
[CrossRef]

Karlov, N. V.

V. M. Akulin, N. V. Karlov, Intense Resonant Interactions in Quantum Electronics (Springer-Verlag, Berlin, 1992), Lecture 6.
[CrossRef]

Koseki, K.

M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.

Koshi, M.

M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.

Leopold, K. E.

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

Leugers, M. A.

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

M. A. Leugers, C. J. Seliskar, “The rotation-torsion contour of the 2668 Å origin band of toluene. High-resolution 295 K absorption spectrum,” J. Mol. Spectrosc. 91, 150–164 (1982).
[CrossRef]

Long, G. R.

S. E. Bialkowski, G. R. Long, “Quantitative discrimination of gas-phase species based on single-wavelength nonlinear intensity dependent pulsed IR laser excited photothermal deflection signals,” Anal. Chem. 59, 873–879 (1987).
[CrossRef]

G. R. Long, S. E. Bialkowski, “Error reduction in pulsed laser photothermal deflection spectrometry,” Anal. Chem. 58, 80–86 (1986).
[CrossRef] [PubMed]

Lörincz, A.

A. Miklós, A. Lörincz, “Windowless resonant acoustic chamber for laser-photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Matsui, H.

M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.

Meucci, M.

N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
[CrossRef]

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

P. L. Meyer, “Air-pollution monitoring with a mobile CO2-laser photoacoustic system,” Ph.D. dissertation 8651 (ETH Zurich, Zurich, 1988).

Miklos, A.

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

Miklós, A.

A. Miklós, A. Lörincz, “Windowless resonant acoustic chamber for laser-photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Miles, R. B.

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

Mogelberg, T.

J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
[CrossRef]

Nyquist, R. A.

R. A. Nyquist, The Interpretation of Vapor-Phase Infrared Spectra, Sadtler Laboratories, (Heyden, London, 1984), Vol. 1, p. 120.

Olafsson, A.

A. Olafsson, M. Hammerich, J. Henningsen, “Photoacoustic spectroscopy of C2H4 with a tunable waveguide CO2 laser,” Appl. Opt. 31, 2657–2668 (1992).
[CrossRef] [PubMed]

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

J. Henningsen, A. Olafsson, M. Hammerich, “Trace detection with infrared gas lasers,” in Applied Laser Spectroscopy, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), pp. 403–416.
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Pugh, D.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

D. Pugh, “Theoretical foundation of photoacoustics in the frequency and time domains,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 2.
[CrossRef]

Rabitz, H.

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

Repond, P.

P. Repond, “Photoacoustic spectroscopy on gases with a continuously tunable high pressure CO2 laser,” Ph.D. dissertation 11047 (ETH Zurich, Zurich, Switzerland, 1995).

P. Repond, M. W. Sigrist, “Continuously tunable high pressure CO2 laser for spectroscopic studies on trace gases,” IEEE J. Quantum Electron., to be published.

Reuss, J.

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

Ringwelski, A.

K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

M. A. H. Smith, C. P. Rinsland, “Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 μm,” J. Opt. Soc. Am. B 5, 585–592 (1988).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Rohlfing, E. A.

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

Rooth, R. A.

Rosengren, L. G.

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide. Part 3,” Appl. Opt. 25, 1795–1816 (1986).
[CrossRef] [PubMed]

Sarjeant, W. J.

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

Scherer, J. R.

J. R. Scherer, “Group vibrations of substituted benzenes-II. Planar CH deformations and ring stretching and bending modes of chlorinated benzenes,” Spectrochim. Acta 21, 321– 339 (1965).
[CrossRef]

Schuurman, J.

J. Schuurman, G. H. Wegdam, “Vibrational energy relaxation in CH3X molecules,” Chem. Phys. Lett. 73, 429–432 (1980).
[CrossRef]

Seliskar, C. J.

M. A. Leugers, C. J. Seliskar, “The rotation-torsion contour of the 2668 Å origin band of toluene. High-resolution 295 K absorption spectrum,” J. Mol. Spectrosc. 91, 150–164 (1982).
[CrossRef]

Sigrist, M. W.

A. Thöny, M. W. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

M. W. Sigrist, “Environmental and chemical trace gas analysis by photoacoustic methods,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 7.

P. Repond, M. W. Sigrist, “Continuously tunable high pressure CO2 laser for spectroscopic studies on trace gases,” IEEE J. Quantum Electron., to be published.

Smith, I. W. M.

N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

M. A. H. Smith, C. P. Rinsland, “Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 μm,” J. Opt. Soc. Am. B 5, 585–592 (1988).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Smith, N. J. G.

N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
[CrossRef]

Solyom, A. M.

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acustica 80, 339–351 (1994).

Taylor, R. S.

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

Thöny, A.

A. Thöny, M. W. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Vala, M.

J. Wrobel, M. Vala, “Time-resolved optoacoustic spectroscopy,” Chem. Phys. 33, 93–105 (1978).
[CrossRef]

Verhage, A. J. L.

Violino, P.

N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
[CrossRef]

Voesenek, L. A. C. J.

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

Walrand, J.

I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
[CrossRef]

Wegdam, G. H.

J. Schuurman, G. H. Wegdam, “Vibrational energy relaxation in CH3X molecules,” Chem. Phys. Lett. 73, 429–432 (1980).
[CrossRef]

Weir, I. J. M.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

Wiberley, S. E.

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, 1990).

Wouters, L. W.

Wrobel, J.

J. Wrobel, M. Vala, “Time-resolved optoacoustic spectroscopy,” Chem. Phys. 33, 93–105 (1978).
[CrossRef]

Xie, Y.

Y. Xie, J. E. Boggs, “The computed force constants and vibrational spectra of toluene,” J. Comput. Chem. 7, 158–164 (1986).
[CrossRef]

Yoshimura, M.

M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.

Zanzottera, E.

I. Carrer, L. Fiorina, E. Zanzottera, “High sensitivity cell for pulsed photoacoustic spectroscopy in gases and liquids,” in Photoacoustic and Photothermal Phenomena III, D. Bicanic, ed., Vol. 69 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1992), pp. 568–571.

Zhou, Y.

Acustica

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acustica 80, 339–351 (1994).

Anal. Chem.

G. R. Long, S. E. Bialkowski, “Error reduction in pulsed laser photothermal deflection spectrometry,” Anal. Chem. 58, 80–86 (1986).
[CrossRef] [PubMed]

P. V. Cvijin, D. A. Gilmore, M. A. Leugers, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

S. E. Bialkowski, G. R. Long, “Quantitative discrimination of gas-phase species based on single-wavelength nonlinear intensity dependent pulsed IR laser excited photothermal deflection signals,” Anal. Chem. 59, 873–879 (1987).
[CrossRef]

G. Z. Angeli, A. M. Solyom, A. Miklos, D. D. Bicanic, “Calibration of a windowless photoacoustic cell for detection of trace gases,” Anal. Chem. 64, 155–158 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Olafsson, M. Hammerich, J. Bülow, J. Henningsen, “Photoacoustic detection of NH3 in power plant emission with a CO2 laser,” Appl. Phys. B 49, 91–97 (1989).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B 50, 137–144 (1990).
[CrossRef]

A. Miklós, A. Lörincz, “Windowless resonant acoustic chamber for laser-photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Chem. Phys.

J. Wrobel, M. Vala, “Time-resolved optoacoustic spectroscopy,” Chem. Phys. 33, 93–105 (1978).
[CrossRef]

Chem. Phys. Lett.

K. M. Beck, A. Ringwelski, R. J. Gordon, “Time-resolved optoacoustic measurements of vibrational relaxation rates,” Chem. Phys. Lett. 121, 529–534 (1985).
[CrossRef]

J. Schuurman, G. H. Wegdam, “Vibrational energy relaxation in CH3X molecules,” Chem. Phys. Lett. 73, 429–432 (1980).
[CrossRef]

IEEE J. Quantum Electron.

R. S. Taylor, A. J. Alcock, W. J. Sarjeant, K. E. Leopold, “Electrical and gain characteristics of a multiatmosphere UV-preionized CO2 laser,” IEEE J. Quantum Electron. 15, 1131–1140 (1979).
[CrossRef]

Infrared Phys.

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapours for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Infrared Phys. Technol.

A. Thöny, M. W. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

J. Chem. Phys.

N. J. G. Smith, C. C. Davis, I. W. M. Smith, “Studies of vibrational relaxation in OCS and CF4 by pulsed photoacoustic techniques,” J. Chem. Phys. 80, 6122–6133 (1984).
[CrossRef]

E. A. Rohlfing, J. Gelfand, R. B. Miles, H. Rabitz, “Observation of collisional relaxation from HD ν = 5 and ν = 6 by direct overtone pumping and photoacoustic detection,” J. Chem. Phys. 75, 4893–4896 (1981).
[CrossRef]

K. M. Beck, R. J. Gordon, “Theory and application of time-resolved optoacoustics in gases,” J. Chem. Phys. 89, 5560–5567 (1988).
[CrossRef]

J. Comput. Chem.

Y. Xie, J. E. Boggs, “The computed force constants and vibrational spectra of toluene,” J. Comput. Chem. 7, 158–164 (1986).
[CrossRef]

J. Mol. Spectrosc.

I. Cauuet, J. Walrand, G. Blanquet, “Extension to third-order Coriolis terms of the analysis of ν10, ν7, and ν4 levels of ethylene on the basis of Fourier transform and diode laser spectra,” J. Mol. Spectrosc. 139, 191–214 (1990).
[CrossRef]

M. A. Leugers, C. J. Seliskar, “The rotation-torsion contour of the 2668 Å origin band of toluene. High-resolution 295 K absorption spectrum,” J. Mol. Spectrosc. 91, 150–164 (1982).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. E: Sci. Instrum.

N. Ioli, P. Violino, M. Meucci, “A simple transversely excited spectrophone,” J. Phys. E: Sci. Instrum. 12, 168–170 (1979).
[CrossRef]

J. Phys. IV

J. Henningsen, T. Mogelberg, M. Hammerich, “Spectrally resolved detection of NH3 at ppb level,” J. Phys. IV 4(Colloque C7), 499–502 (1994).
[CrossRef]

F. G. C. Bijnen, H. S. M. de Vries, F. J. M. Harren, J. Reuss, “Cockroaches and tomatoes investigated by laser photoacoustics,” J. Phys. IV 4(Colloque C7), 435–442 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The Hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Mol. Phys.

R. T. Bailey, F. R. Cruickshank, R. Guthrie, D. Pugh, I. J. M. Weir, “Short time-scale effects in the pulsed source thermal lens,” Mol. Phys. 48, 81–95 (1983).
[CrossRef]

Opt. Commun.

J. M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

D. M. Cox, “Pulsed optoacoustic detection of multiple photon excitation in molecules,” Opt. Commun. 24, 336–340 (1978).
[CrossRef]

Rev. Sci. Instrum.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Spectrochim. Acta

J. A. Draeger, “The methylbenzenes-I. Vapor-phase vibrational fundamentals, internal rotations and a modified valence force field,” Spectrochim. Acta 41A, 607–627 (1985).

J. R. Scherer, “Group vibrations of substituted benzenes-II. Planar CH deformations and ring stretching and bending modes of chlorinated benzenes,” Spectrochim. Acta 21, 321– 339 (1965).
[CrossRef]

Top. Curr. Chem

P. Hess, “Resonant photoacoustic spectroscopy,” Top. Curr. Chem 111, 1–32 (1983).
[CrossRef]

Other

M. Fiedler, P. Hess, “Laser excitation of acoustic modes in cylindrical and spherical resonators: theory and applications,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 5.
[CrossRef]

D. Pugh, “Theoretical foundation of photoacoustics in the frequency and time domains,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 2.
[CrossRef]

P. Repond, “Photoacoustic spectroscopy on gases with a continuously tunable high pressure CO2 laser,” Ph.D. dissertation 11047 (ETH Zurich, Zurich, Switzerland, 1995).

P. Repond, M. W. Sigrist, “Continuously tunable high pressure CO2 laser for spectroscopic studies on trace gases,” IEEE J. Quantum Electron., to be published.

P. Hess, “Principles of photoacoustic and photothermal detection in gases,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 4.

G. J. Diebold, “Application of the photoacoustic effect to studies of gas phase chemical kinetics,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, ed., Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989), Chap. 6.
[CrossRef]

M. Koshi, M. Yoshimura, K. Koseki, H. Matsui, “Studies of vibrational relaxation of silane and its fluorine derivatives by a time resolved photoacoustic technique,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, eds., Vol. 58 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1987), pp. 91–94.

V. M. Akulin, N. V. Karlov, Intense Resonant Interactions in Quantum Electronics (Springer-Verlag, Berlin, 1992), Lecture 6.
[CrossRef]

J. Henningsen, A. Olafsson, M. Hammerich, “Trace detection with infrared gas lasers,” in Applied Laser Spectroscopy, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), pp. 403–416.
[CrossRef]

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Florida, 1991).

J. M. Hollas, High Resolution Spectroscopy (Butterworth, London, 1982).

F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1988).

M. W. Sigrist, ed., Air Monitoring by Spectroscopic Techniques, Vol. 127 of Wiley Chemical Analysis Series (Wiley, New York, 1994).

M. W. Sigrist, “Environmental and chemical trace gas analysis by photoacoustic methods,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), Chap. 7.

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, San Diego, 1990).

R. A. Nyquist, The Interpretation of Vapor-Phase Infrared Spectra, Sadtler Laboratories, (Heyden, London, 1984), Vol. 1, p. 120.

J. O. Henningsen, “Molecular spectroscopy by far-infrared laser emission,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 5, Chap. 2.

P. L. Meyer, “Air-pollution monitoring with a mobile CO2-laser photoacoustic system,” Ph.D. dissertation 8651 (ETH Zurich, Zurich, 1988).

I. Carrer, L. Fiorina, E. Zanzottera, “High sensitivity cell for pulsed photoacoustic spectroscopy in gases and liquids,” in Photoacoustic and Photothermal Phenomena III, D. Bicanic, ed., Vol. 69 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1992), pp. 568–571.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Numerical simulation of expression (3) for τnr = 200 μs and τ t = 10 ms.

Fig. 2
Fig. 2

Calculated PA signal for a Gaussian-beam profile. Time is given in units of the acoustic travel time τ p , and ∊ = τ p nr is the ratio of the acoustic to the V–T relaxation time constant (from Beck et al.15).

Fig. 3
Fig. 3

Experimental setup for PA investigations with the continuously tunable CO2 laser. PyD’s, pyroelectric detectors; Mic, microphone.

Fig. 4
Fig. 4

Schematic drawing of the two stainless steel PA cells tested. Both cells have a cylindrical geometry and are closed by Brewster windows. The microphone (Knowles BT-1751 or EK-3133) is placed at the center, with its membrane flush with the wall (black rectangle): (a) cell A, with an inner diameter of 14 mm and a length of 412 mm (along the axis), (b) cell B with an inner diameter of 6 mm at the center and 14 mm at both sides. The cell length is 280 mm.

Fig. 5
Fig. 5

PA signal recorded with the microphone BT-1751 for ~1 part in 106 C2H4 buffered in synthetic air (upper curve), for synthetic air alone (middle curve), and with the laser beam blocked (bottom curve; offset, −0.11 mV). The curves have been averaged over 10 pulses to eliminate random noise.

Fig. 6
Fig. 6

PA signal of 101.8-ppm C2H4 buffered in 1000-mbar synthetic air at 949.433 cm−1 (open circles) and 946.011 cm−1 (filled circles). The crosses show the measurement at 946.011 cm−1 scaled with the factor of 3.77.

Fig. 7
Fig. 7

Energy dependence of the PA signal measured for 101.8 ppm C2H4 at 949.433 cm−1 (strong absorption) expressed in a double logarithmic plot. The slopes of the regression lines at the high-energy side (slope, 0.59, solid line) and at the low-energy side (slope, 0.85, dotted line) are smaller than unity.

Fig. 8
Fig. 8

Least-squares fit with expression (11) of the data for C2H4 presented partly in Fig. 6. Open circles, 101.8 ppm at 949.433 cm−1, strong absorption; filled circles, 10.18 ppm at 949.433 cm−1, strong absorption; open triangles, 101.8 ppm at 946.011 cm−1, weak absorption.

Fig. 9
Fig. 9

Normalized PA spectrum of 18.18 ppm C2H4 at 1000-mbar total pressure, measured with cell B in a portion of the 10P branch. Open circles, spot size of 3.07 mm; filled circles, spot size of 0.34 mm.

Fig. 10
Fig. 10

Concentration dependence of the PA signal for C2H4 at 949.433 cm−1 and for a pulse energy of 20 mJ. The regression line of slope 1.01 ± 0.01 in the double logarithmic representation demonstrates the linear dependence.

Fig. 11
Fig. 11

Least-squares fit of the PA spectrum of 13% CO2 buffered in synthetic air in the 10P branch at 1000 mbar and 296 K (dotted upper curve) to the calculated absorption cross section (solid lower curve).

Fig. 12
Fig. 12

Least-squares fit of the PA spectrum of 98.2-ppm NH3 buffered in synthetic air in the 10P branch at 1000 mbar and 296 K (dotted upper curve) to the calculated absorption cross section (solid lower curve). The vertical lines indicate the CO2 laser transitions.

Fig. 13
Fig. 13

Least-squares fit of the PA spectrum of 0.38% O3 buffered in O2 and N2 in the 9R(16) to 9R(20) spectral region at 1000 mbar and 296 K (open circles) to the calculated absorption cross section (solid curve). The three vertical lines indicate the CO2 laser transition, and the dotted curve at the bottom represents the calculated absorption cross section of O3 at 20 mbar.

Fig. 14
Fig. 14

PA spectrum of 33-ppm C2H4 buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 10P branch. The vertical lines indicate the CO2 laser transitions.

Fig. 15
Fig. 15

PA spectrum of 101.8-ppm C2H4 buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9P branch. The vertical lines indicate the CO2 laser transitions. The symbols on top of the main peaks refer to the assignment of the transitions with ΔJ = +1 and ΔK = +1 (see text).

Fig. 16
Fig. 16

PA spectrum of 15.9-ppm CH3OH buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9P branch. The vertical lines indicate the CO2 laser transitions. The heavy horizontal bars delimit the multiplets R(0τK, J) with J = 3–14 from left to right.48

Fig. 17
Fig. 17

PA spectrum of 95.4-ppm CH3OH buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9R branch. The vertical lines indicate the CO2 laser transitions.

Fig. 18
Fig. 18

PA spectrum of 20.8-ppm C2H5OH buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9P branch. The vertical lines indicate the CO2 laser transition.

Fig. 19
Fig. 19

PA spectrum of 103.8-ppm C2H5OH buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9R branch. The vertical lines indicate the CO2 laser transition.

Fig. 20
Fig. 20

PA spectrum of 101-ppm C7H8 buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9P branch. The vertical lines indicate the CO2 laser transitions.

Fig. 21
Fig. 21

Corrected PA spectrum of 101-ppm C7H8 buffered in synthetic air at a total pressure of 1000 mbar and room temperature in the 9R branch (circles), measured spectrum of C7H8 (upper curve), and calculated spectral signature of NH3 (solid curve at bottom). For details see text.

Fig. 22
Fig. 22

PA spectrum in the 9P branch of a mixture containing 84.8-ppm C2H4 and 15.9-ppm CH3OH buffered in synthetic air at a total pressure of 1000 mbar and at room temperature (mixture A). Measured data (heavy solid curve), fitted curve (light solid line), and residuals (fitted minus measured curve, dotted curve at bottom). The arrows indicate selected CH3OH absorption peaks (for details see text).

Fig. 23
Fig. 23

PA spectrum in the 10P branch of a mixture containing 14.1% CO2, 52.6-ppm NH3 and 33-ppm C2H4 buffered in synthetic air at a total pressure of 1000 mbar and at room temperature (mixture B). Measured data (heavy solid curve), fitted curve (light solid curve), and residuals (fitted minus measured curve, dotted curve at bottom).

Fig. 24
Fig. 24

PA spectrum in the 10P branch of a mixture containing 4.9% CO2, 79.1-ppm NH3, and 14.77-ppm C2H4 buffered in synthetic air at a total pressure of 1000 mbar and at room temperature (mixture C). Measured data (heavy solid curve), fitted curve (light solid curve), and residuals (fitted minus measured curve, dotted curve at bottom).

Fig. 25
Fig. 25

PA spectrum in the 9R branch of a mixture containing 33.1-ppm CH3OH, 19.4-ppm C2H5OH, and 47.1-ppm C7H8 buffered in synthetic air at a total pressure of 1000 mbar and at room temperature (mixture D). Measured data (heavy solid curve), fitted curve (light solid curve), and residuals (fitted minus measured curve with an offset of 0.2 V J−1, dotted curve at bottom).

Fig. 26
Fig. 26

PA spectrum in the 9R branch of a mixture containing 18.6-ppm CH3OH, 9-ppm C2H5OH, and 72.6-ppm C7H8 buffered in synthetic air at a total pressure of 1000 mbar and at room temperature (mixture E). Measured data (heavy solid curve), fitted curve (light solid curve) and residuals (fitted minus measured curve with an offset of 0.18 V J−1, dotted curve at bottom).

Tables (2)

Tables Icon

Table 1 Typical Time Scales of the Processes Relevant for Pulsed PA in Gases

Tables Icon

Table 2 Measured and Expected Concentrations of Various Multicomponent Gas Mixtures

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E abs ( λ, E ) = α ( λ ) L E ,
( 2 1 c s 2 2 t 2 ) p ( r , t ) = β C p H ( r , t ) t ,
p ( t ) [ 1 exp ( t / τ nr ) ] exp ( t / τ t ) .
v m , n , n z = c s 2 [ ( α m n r ) 2 + ( n z L ) 2 ] 1 / 2 ,
S ( E , λ ) = C α ( λ ) E ,
α ( λ ) = N tot c * σ ( λ ) .
c s = ( γ R T M ) 1 / 2 ,
α ( ω , I ω ) = 4 π 2 N μ 21 2 c ћ ω f ( ω ) 1 ( 1 + I ω / I sat ) 1 / 2 ,
I sat res = ћ ω 2 στ ,
S ( F , λ ) = C α ( λ , F ) F ,
S ( F ) F ( 1 + F / F sat ) 1 / 2 .
S ( E , λ ) = C α ( λ ) E = C c * N tot σ ( λ ) E .
C = S c * N tot σ ( λ ) E .
C = 3 . 94 × 10 3 V J 1 cm .
E ( υ , J , K ) E ( υ ) + { 1 2 ( B + C ) J ( J + 1 ) + [ A 1 2 ( B + C ) ] K 2 } ,
Δ J = 0 , ± 1 , Δ K = ± 1 .
Δ E = E ( { 1 , J + 1 , K + 1 } { 0 , J , K } ) E ( { 1 , J + 1 , K + 1 } { 0 , J , K } ) .
υ = 1 υ = 0 , Δ J = 1 , 0 , + 1 , Δ K = 0 ,

Metrics