Abstract

Recent advances in room-temperature visible diode lasers and ultrasensitive detection techniques have been exploited to create a highly sensitive tunable diode laser absorption technique for in situ monitoring of NO2 in the lower troposphere. High sensitivity to NO2 is achieved by probing the visible absorption band of NO2 with an AlGaInP diode laser at 640 or 670 nm combined with a balanced ratiometric electronic detection technique. We have demonstrated a sensitivity of 3.5 × 1010 cm−3 for neat NO2 in a 1-m path at 640 nm and have estimated a sensitivity for ambient operation of 5 ppbv m (10 ppbv m at 670 nm), where ppbvm is parts in 109 by volume per meter of absorption path length, from measured pressure-broadening coefficients.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986), pp. 368–369.
  2. A. C. Delany, “Fast-response chemical sensors used for eddy correlation flux measurements,” in Measurement Challenges in Atmospheric Chemistry, L. Newman, ed. (American Chemical Society, Washington, D.C., 1993), Chap. 3, pp. 91–100.
    [CrossRef]
  3. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, HNO3,” Appl. Opt. 33, 454–472 (1994).
    [CrossRef] [PubMed]
  4. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  5. P. C. D. Hobbs, “Shot-noise limited optical measurements at baseband with noisy laser,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1990).
  6. K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, Proc. SPIE1435, 298–309 (1991).
  7. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-IR and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
    [CrossRef] [PubMed]
  8. W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.
  9. D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.
  10. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
    [CrossRef]
  11. H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.
  12. P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. Press, Cambridge, 1980), p. 306.
  13. W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
    [CrossRef]
  14. E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
    [CrossRef]
  15. J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
    [CrossRef]
  16. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
    [CrossRef] [PubMed]
  17. N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

1995 (1)

1994 (2)

1987 (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

1985 (1)

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

1980 (1)

1977 (1)

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

1968 (1)

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

Allen, M. G.

Ballik, E. A.

Bien, F.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

Burrows, J. P.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Carleton, K. L.

Carlisle, C. B.

Carr, L. W.

Chave, R. G.

Cooper, D. E.

Crouch, S. R.

H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.

Davis, S. J.

Delany, A. C.

A. C. Delany, “Fast-response chemical sensors used for eddy correlation flux measurements,” in Measurement Challenges in Atmospheric Chemistry, L. Newman, ed. (American Chemical Society, Washington, D.C., 1993), Chap. 3, pp. 91–100.
[CrossRef]

DeMore, W. B.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

El-Sherbiny, M.

Enke, C. G.

H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986), pp. 368–369.

Garside, B. K.

Gehrtz, M.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Golden, D. M.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Goldstein, N.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

Haller, K. L.

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, Proc. SPIE1435, 298–309 (1991).

Hampson, R. F.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Hill, W.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. Press, Cambridge, 1980), p. 306.

Hobbs, P. C. D.

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, Proc. SPIE1435, 298–309 (1991).

P. C. D. Hobbs, “Shot-noise limited optical measurements at baseband with noisy laser,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1990).

Horlick, G.

H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.

Horowitz, P.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. Press, Cambridge, 1980), p. 306.

Howard, C. J.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Hsu, D. K.

D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.

Kendall, J.

Kessler, W. J.

Korylo, M. J.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Lee, J.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

Lenth, W.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Longbothum, R. L.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Malmstadt, H. V.

H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.

Martinelli, R. U.

May, R. D.

Menna, R. J.

Molina, M. J.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Monts, D. L.

D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.

Moortgat, G. K.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Olivero, J. J.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Otis, C. E.

Palombo, D. A.

Pitts, J. N.

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986), pp. 368–369.

Ravishankara, A. R.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Reid, J.

Riris, H.

Sander, S. P.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

Schneider, W.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Sonnenfroh, D. M.

Trimble, C. A.

Tyndall, G. S.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Webster, C. R.

Whiting, E. E.

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

Zare, R. N.

D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

J. Photochem. Photobiol. A (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross sections of NO2 in the uv and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968).
[CrossRef]

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Other (9)

B. J. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986), pp. 368–369.

A. C. Delany, “Fast-response chemical sensors used for eddy correlation flux measurements,” in Measurement Challenges in Atmospheric Chemistry, L. Newman, ed. (American Chemical Society, Washington, D.C., 1993), Chap. 3, pp. 91–100.
[CrossRef]

P. C. D. Hobbs, “Shot-noise limited optical measurements at baseband with noisy laser,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1990).

K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, Proc. SPIE1435, 298–309 (1991).

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 130–139 (1993).

H. V. Malmstadt, C. G. Enke, S. R. Crouch, G. Horlick, Optimization of Electronic Measurements (Benjamin/Cummings, Menlo Park, Calif., 1974), pp. 98–105.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. Press, Cambridge, 1980), p. 306.

W. B. DeMore, S. P. Sander, D. M. Golden, M. J. Molina, R. F. Hampson, M. J. Korylo, C. J. Howard, A. R. Ravishankara, “Chemical kinetics and photochemical data for use in stratospheric modeling,” JPL Pub. 90-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1990), pp. 92–95.

D. K. Hsu, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide: 5530 to 6480 Angstroms (Academic, New York, 1978), pp. 456–457.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the BRD (from Ref. 5).

Fig. 2
Fig. 2

Schematic diagram of the experimental apparatus. AR, antireflection.

Fig. 3
Fig. 3

Survey spectrum near 15645.5 cm−1 (638.929 nm).

Fig. 4
Fig. 4

Absorption for the transition at 15646.337 cm−1 and for the transition at 14935.980 cm−1 versus NO2 number density.

Fig. 5
Fig. 5

Absorption spectrum for the transition at 15646.337 cm−1 for 7 × 1011-cm−3 (22-μTorr) NO2.

Fig. 6
Fig. 6

Absorption spectrum near the transition at 14935.980 cm−1 (669.34 nm).

Fig. 7
Fig. 7

Absorption spectrum for the transition at 15646.419 cm−1 for 0.5-Torr NO2 and 0 and 664-Torr N2.

Tables (1)

Tables Icon

Table 1 Comparison of Sensitivity versus Wavelength

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V 1 = G ln ( I ref I sig 1 ) ,
g D ( ν = ν 0 ) = 2 Δ ν D ( ln 2 π ) 1 / 2 .
Δ ν D = ν 0 c ( 8 k T ln 2 m ) 1 / 2 ,
α neq = ( 4 q B i sig ) 1 / 2 ,
B = 1 2 π f .
Δ ν V = 0 . 535 Δ ν C + ( Δ ν D 2 + 0 . 217 Δ ν C 2 ) 1 / 2 ,
Δ ν C = 2 γ P P .

Metrics