Abstract

Trace concentrations of NO and NO2 are detected with a dye laser operating near 454 nm. NO is detected by a (2 + 2) resonance-enhanced multiphoton ionization process by means of NO A 2+X 2Π(0, 0) transitions with miniature electrodes, and NO2 is detected by a one-photon absorption photoacoustic process by means of NO2A˜2B1(0,8,0)X˜2A1(0,0,0) transitions with a miniature microphone. Rotationally resolved excitation spectra show that the spectral resolution is sufficiently high to identify these species at 1 atm. The technique’s analytical merits are evaluated as functions of concentration, pressure, and laser intensities. Low laser intensities favor NO2 photoacoustic detection whereas high laser intensities favor NO ionization. Limits of detection (signal-to-noise ratio 3) of 160 parts in 109 for NO and 400 parts in 109 for NO2 are determined at 1 atm for a 10-s integration time. Signal response and noise analyses show that three decades of NO/NO2 mixtures can be measured with a computational relative error in concentration that is three times the relative error in measuring the NO and NO signals.2

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection for gas-phase chemical analysis,” Appl. Spectrosc. Rev., to be published.
  2. L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
    [CrossRef]
  3. H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
    [CrossRef]
  4. J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
    [PubMed]
  5. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
    [CrossRef]
  6. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
    [CrossRef]
  7. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
    [CrossRef]
  8. A. Fried, “A study of measurement interference in the opto-acoustic detection of NO2 by argon-ion laser excitation,” Appl. Spectrosc. 36, 562–565 (1982).
    [CrossRef]
  9. P. C. Claspy, C. Ha, Y. H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
    [CrossRef] [PubMed]
  10. R. W. Terhune, J. E. Anderson, “Spectrophone measurements of the absorption of visible by aerosols in the atmosphere,” Opt. Lett. 1, 70–72 (1973).
    [CrossRef]
  11. A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
    [CrossRef]
  12. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
    [CrossRef]
  13. V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978).
    [CrossRef]
  14. T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
    [CrossRef]
  15. Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
    [CrossRef]
  16. R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
    [CrossRef]
  17. R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
    [CrossRef]
  18. L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
    [CrossRef]
  19. T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
    [CrossRef]
  20. J. L. Hardwick, “Fluorescence from the 2B1 state of NO2 excited at 4545 Å,” J. Mol. Spectrosc. 66, 248–258 (1977).
    [CrossRef]
  21. A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965).
    [CrossRef]
  22. D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).
  23. C. K. Williamson, R. L. Pastel, R. C. Sausa, “Detection of ambient NO by laser-induced photoacoustic spectrometry using A 2∑+–X2Π(0,0) transitions near 226 nm,” Appl. Spectrosc. 50, 205–210 (1996).
    [CrossRef]
  24. S. D. Conte, C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 1972).

1996 (1)

1994 (4)

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
[PubMed]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

1993 (2)

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

1989 (1)

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

1984 (2)

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

1982 (1)

1981 (1)

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

1980 (2)

D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).

T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
[CrossRef]

1979 (1)

T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
[CrossRef]

1978 (1)

V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978).
[CrossRef]

1977 (2)

J. L. Hardwick, “Fluorescence from the 2B1 state of NO2 excited at 4545 Å,” J. Mol. Spectrosc. 66, 248–258 (1977).
[CrossRef]

P. C. Claspy, C. Ha, Y. H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
[CrossRef] [PubMed]

1975 (2)

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
[CrossRef]

1973 (1)

1965 (1)

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965).
[CrossRef]

Anderson, J. E.

Angus, A. M.

A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
[CrossRef]

Bigio, L.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Clark, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Clark, J. H.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Claspy, P. C.

Colles, M. J.

A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
[CrossRef]

Conte, S. D.

S. D. Conte, C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 1972).

de Boor, C.

S. D. Conte, C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 1972).

Deas, R. M.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Donnelly, V. M.

V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978).
[CrossRef]

Douglas, A. E.

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965).
[CrossRef]

Ezra, G. S.

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

Fahey, D. W.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Fried, A.

Gao, R. S.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Grant, E. R.

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Ha, C.

Hardwick, J. L.

J. L. Hardwick, “Fluorescence from the 2B1 state of NO2 excited at 4545 Å,” J. Mol. Spectrosc. 66, 248–258 (1977).
[CrossRef]

Hass, Y.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Houston, P. L.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Huber, K. P.

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965).
[CrossRef]

Imasaka, T.

T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
[CrossRef]

Imasake, T.

T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
[CrossRef]

Ishibashi, N.

T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
[CrossRef]

T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
[CrossRef]

Jaegle, L.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Johnson, P. M.

D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).

Kaufman, F.

V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978).
[CrossRef]

Keim, E. R.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Kolsch, H. J.

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

Kosmidis, C.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Last, J. A.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
[PubMed]

Ledingham, K. W. D.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Lemire, G. W.

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

Marinero, E. E.

A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
[CrossRef]

Marshall, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

May, R. D.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Moore, C. B.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Morrison, R. J. S.

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Ogawa, T.

T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
[CrossRef]

T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
[CrossRef]

Pao, Y. H.

Pastel, R. L.

Pfister, L.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Proffitt, M. H.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Rairoux, P.

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

Robrish, P.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Rockney, B. H.

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Rosen, H.

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

Salawith, R. J.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Sander, J.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Sausa, R. C.

C. K. Williamson, R. L. Pastel, R. C. Sausa, “Detection of ambient NO by laser-induced photoacoustic spectrometry using A 2∑+–X2Π(0,0) transitions near 226 nm,” Appl. Spectrosc. 50, 205–210 (1996).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection for gas-phase chemical analysis,” Appl. Spectrosc. Rev., to be published.

Simeonsson, J. B.

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection for gas-phase chemical analysis,” Appl. Spectrosc. Rev., to be published.

Singhal, R. P.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Stimple, R. M.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Sun, W.-M.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
[PubMed]

Tapper, R. S.

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

Terhune, R. W.

Webster, C. R.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Whetten, T. L.

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

Williamson, C. K.

Witschi, H.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
[PubMed]

Wofsy, S. C.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Wolf, J. P.

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

Woodbridge, E. L.

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

Woste, L.

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

Zakheim, D. S.

D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).

Anal. Chem. (2)

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detection ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

Appl. Opt. (2)

P. C. Claspy, C. Ha, Y. H. Pao, “Optoacoustic detection of NO2 using a pulsed dye laser,” Appl. Opt. 16, 2972–2973 (1977).
[CrossRef] [PubMed]

H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 26, 2052–2056 (1989).
[CrossRef]

Appl. Spectrosc. (3)

Can. J. Phys. (1)

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in 3700–4600 Å region,” Can. J. Phys. 43, 74 (1965).
[CrossRef]

Chem. Phys. (1)

T. Imasake, T. Ogawa, N. Ishibashi, “Inter- and intramolecular radiationless transitions of NO2 at around 454.6 nm,” Chem. Phys. 45, 273–278 (1980).
[CrossRef]

Environ. Health Perspect. (1)

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2: oxidation and air pollutants and more,” Environ. Health Perspect. 102, Suppl. 10, 179 (1994).
[PubMed]

Geophys. Res. Lett. (1)

L. Jaegle, C. R. Webster, R. D. May, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, M. H. Proffitt, R. M. Stimple, R. J. Salawith, S. C. Wofsy, L. Pfister, “In situ measurements of the NO2/NO ratio for testing atmospheric photochemical models,” Geophys. Res. Lett. 21, 2555–2558 (1994).
[CrossRef]

J. Chem. Phys. (5)

Y. Hass, P. L. Houston, J. H. Clark, C. B. Moore, H. Rosen, P. Robrish, “Long-lived Ka = 0, 2B1 states of NO2: a direct measurements using a tunable dye laser,” J. Chem. Phys. 63, 4195–4197 (1975).
[CrossRef]

V. M. Donnelly, F. Kaufman, “Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy,” J. Chem. Phys. 69, 1456–1460 (1978).
[CrossRef]

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

T. Imasaka, T. Ogawa, N. Ishibashi, “Time-resolved spectroscopy on the excited electronic states of NO2 in the neighborhood of 454.6 nm,” J. Chem. Phys. 70, 881–885 (1979).
[CrossRef]

D. S. Zakheim, P. M. Johnson, “Rate equation of molecular multiphoton ionization dynamics,” J. Chem. Phys. 46, 263– 272 (1980).

J. Mol. Spectrosc. (1)

J. L. Hardwick, “Fluorescence from the 2B1 state of NO2 excited at 4545 Å,” J. Mol. Spectrosc. 66, 248–258 (1977).
[CrossRef]

J. Phys. Chem. (2)

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: the distinct dynamics of two-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984).
[CrossRef]

R. S. Tapper, T. L. Whetten, G. S. Ezra, E. R. Grant, “The role of near-resonant intermediate states in the two-photon excitation of NO2: origin bands in bent-to-linear transitions,” J. Phys. Chem. 88, 1273–1275 (1984).
[CrossRef]

Opt. Lett. (1)

Optic Commun. (1)

A. M. Angus, E. E. Marinero, M. J. Colles, “Opto-acoustic spectroscopy with a visible CW dye laser,” Optic Commun. 14, 223–225 (1975).
[CrossRef]

Rapid Commun. Mass Spectrosc. (1)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrosc. 8, 521–526 (1994).
[CrossRef]

Other (2)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection for gas-phase chemical analysis,” Appl. Spectrosc. Rev., to be published.

S. D. Conte, C. de Boor, Elementary Numerical Analysis (McGraw-Hill, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental apparatus.

Fig. 2
Fig. 2

Partial potential energy diagram of NO and NO2.

Fig. 3
Fig. 3

Laser excitation spectra of NO and NO2 obtained by (2 + 2) REMPI and PA spectroscopy, respectively, near 454 nm.

Fig. 4
Fig. 4

Signal dependence on laser intensity for 147-ppm NO2 PA (▲) without a lens, 86-ppm NO REMPI (●) and 78-ppm NO2 REMPI (♦) with a 12-cm lens, and 333-ppm NO REMPI with a 50-cm lens (■).

Fig. 5
Fig. 5

Plots of NO REMPI and NO2 PA signals as functions of N2 pressure at (a) constant density, (b) constant mixture. For (a), the densities are [NO2] = 3.7 × 1014 cm−3 (■), [NO] = 1.5 × 1015 cm−3 (●). For (b), the mixtures are 86-ppm NO in N2 (●), 147-ppm NO2 in N2 (■).

Fig. 6
Fig. 6

Sensitivity plots of (a) NO PA (●) and NO2 PA (■), (b) NO REMPI (●) and NO2 REMPI (■) at 453.856 nm. The data are plotted on log scales.

Tables (2)

Tables Icon

Table 1 NO and NO2 Responses by REMPI and PA Detection at Laser Wavelengths of 453.856 and 454.348 nm

Tables Icon

Table 2 NO and NO2 LOD’s (ppm) by REMPI and PA Detection at Laser Wavelengths of 453.856 and 454.348 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ R PA ( NO ) R PA ( NO 2 ) R REMPI ( NO ) R REMPI ( NO 2 ) ] [ [ NO ] [ NO 2 ] ] = [ S PA S REMPI ] .
3 N s [ R REMPI ( NO 2 ) R REMPI ( NO ) ] [ NO ] [ NO 2 ] ( 1 3 N s ) [ R REMPI ( NO 2 ) R REMPI ( NO ) ]

Metrics