Abstract

A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2ν 3 band near 1.646 μm, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  2. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
    [CrossRef] [PubMed]
  3. M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
    [CrossRef] [PubMed]
  4. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef] [PubMed]
  5. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  6. M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).
  7. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
    [CrossRef] [PubMed]
  8. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
    [CrossRef]
  9. K. Uehara, H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809–814 (1992).
    [CrossRef] [PubMed]
  10. V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
    [CrossRef]
  11. H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
    [CrossRef]
  12. D. C. Hovde, J. A. Silver, A. C. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 110–117 (1994).
  13. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  14. J. S. Margolis, “Measured line positions and strengths of methane between 5500 and 6180 cm−1,” Appl. Opt. 27, 4038–4051 (1988).
    [CrossRef] [PubMed]
  15. P. Varanasi, S. Chudamani, “Measurements of collision-broadened line widths in the ν4-fundamental band of 12CH4 at low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 41, 335–343 (1989).
    [CrossRef]
  16. A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).
  17. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Vol. 2 of Molecular Spectra and Molecular Structure Series (Van Nostrand, New York, 1960).
  18. R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
    [CrossRef]
  19. R. R. Gamache, Center for Atmospheric Research, University of Massachusetts, Lowell, Lowell, Massachusetts 01854 (private communication, June1995).
  20. R. S. McDowell, “Rotational partition functions for spherical-top molecules,” J. Quant. Spectrosc. Radiat. Transfer 38, 337–346 (1987).
    [CrossRef]

1996 (1)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

1995 (1)

1994 (3)

1993 (2)

M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

1992 (3)

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

K. Uehara, H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

1991 (1)

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

1990 (1)

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
[CrossRef]

1989 (2)

P. Varanasi, S. Chudamani, “Measurements of collision-broadened line widths in the ν4-fundamental band of 12CH4 at low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 41, 335–343 (1989).
[CrossRef]

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

1988 (1)

1987 (1)

R. S. McDowell, “Rotational partition functions for spherical-top molecules,” J. Quant. Spectrosc. Radiat. Transfer 38, 337–346 (1987).
[CrossRef]

Aizawa, M.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Allen, M. G.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

Antipov, A. B.

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

Arroyo, M. P.

Baer, D. S.

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Birbeck, T. P.

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Carleton, K. L.

Chudamani, S.

P. Varanasi, S. Chudamani, “Measurements of collision-broadened line widths in the ν4-fundamental band of 12CH4 at low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 41, 335–343 (1989).
[CrossRef]

Davis, S. J.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
[CrossRef]

R. R. Gamache, Center for Atmospheric Research, University of Massachusetts, Lowell, Lowell, Massachusetts 01854 (private communication, June1995).

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gopaul, N. K. L. M.

Hanson, R. K.

Hawkins, R. L.

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
[CrossRef]

Hegarty, J.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Vol. 2 of Molecular Spectra and Molecular Structure Series (Van Nostrand, New York, 1960).

Hovde, D. C.

D. C. Hovde, J. A. Silver, A. C. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 110–117 (1994).

Kessler, W. J.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

Kochanov, V. P.

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

Langlois, S.

Margolis, J. S.

Maruyama, A.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

McDowell, R. S.

R. S. McDowell, “Rotational partition functions for spherical-top molecules,” J. Quant. Spectrosc. Radiat. Transfer 38, 337–346 (1987).
[CrossRef]

Nagai, H.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Nagali, V.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef] [PubMed]

Okamoto, T.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Osawa, S.

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

Otis, C. E.

Palombo, D. A.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Phelan, P.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
[CrossRef]

Sapozhnikova, V. A.

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

Shimose, Y.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Silver, J. A.

D. C. Hovde, J. A. Silver, A. C. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 110–117 (1994).

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sonnenfroh, D. M.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

Stanton, A. C.

D. C. Hovde, J. A. Silver, A. C. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 110–117 (1994).

Tai, H.

K. Uehara, H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

Tinchurina, E. G.

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Uchida, M.

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

Uehara, K.

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

K. Uehara, H. Tai, “Remote detection of methane with a 1.66 μm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

Varanasi, P.

P. Varanasi, S. Chudamani, “Measurements of collision-broadened line widths in the ν4-fundamental band of 12CH4 at low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 41, 335–343 (1989).
[CrossRef]

Weldon, V.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Yamamoto, K.

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

AIAA J. (1)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt. (5)

Electron. Lett. (1)

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 μm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Tai, K. Yamamoto, M. Uchida, S. Osawa, K. Uehara, “Long-distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers,” IEEE Photon. Technol. Lett. 4, 804–807 (1992).
[CrossRef]

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

J. Mol. Spectrosc. (1)

R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–346 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

R. S. McDowell, “Rotational partition functions for spherical-top molecules,” J. Quant. Spectrosc. Radiat. Transfer 38, 337–346 (1987).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: ditions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

P. Varanasi, S. Chudamani, “Measurements of collision-broadened line widths in the ν4-fundamental band of 12CH4 at low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 41, 335–343 (1989).
[CrossRef]

Opt. Lett. (2)

Opt. Spektrosk. (1)

A. B. Antipov, V. P. Kochanov, V. A. Sapozhnikova, E. G. Tinchurina, “Collisional broadening and shift of the 3.39 μm line of the ν3 band of methane,” Opt. Spektrosk. 66, 36–38 (1989).

Other (4)

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Vol. 2 of Molecular Spectra and Molecular Structure Series (Van Nostrand, New York, 1960).

D. C. Hovde, J. A. Silver, A. C. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 110–117 (1994).

M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA Pub. 95-0427 (American Institute of Aeronautics and Astronautics, New York, 1995).

R. R. Gamache, Center for Atmospheric Research, University of Massachusetts, Lowell, Lowell, Massachusetts 01854 (private communication, June1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Line positions and strengths of the 2ν3 band of CH4.13

Fig. 2
Fig. 2

Experimental schematic of the diode-laser sensor system used to validate the spectroscopic parameters of CH4.

Fig. 3
Fig. 3

Raw-data trace (20-sweep average) obtained when a diode laser was tuned at a rate of 100 Hz over CH4 transitions near 1.646 μm in a test cell filled with 5.0 Torr of CH4 at 295 K. The top panel shows the transmitted intensity (I) as a solid curve and the unattenuated signal (I 0) as a dashed curve. The bottom panel shows the étalon trace (I étalon) that was used to convert the absorption scan from the time domain to the frequency domain.

Fig. 4
Fig. 4

Reduced CH4 absorption line shapes near 1.645 μm recorded in the test cell at T = 295 K, P CH 4 = 5 . 0 Torr. The contributions from the individual transitions are illustrated as broken curves. The residual is the difference between the data and the multiline best-fit Voigt profile (solid curve) determined from the superposition of the probed line shapes normalized by the maximum absorbance value.

Fig. 5
Fig. 5

Measured line strengths for the six overlapping transitions of the R(6) manifold of the 2ν 3 band of CH4 at 296 K as a function of pressure. The lowest panel shows the manifold strength as a function of pressure. The dashed horizontal lines represent the average value for each data set. The error bars represent the overall uncertainty assigned to each of the line strengths.

Fig. 6
Fig. 6

Comparison of the partition function values predicted by HITRAN ’92, the SHO model, and Ref. 19.

Fig. 7
Fig. 7

Ratios of the measured and the calculated R(6) manifold strength of CH4 at various temperatures. A value of 1.0 suggests perfect agreement.

Fig. 8
Fig. 8

Calculated minimum detectivity of CH4 in air (total pressure 1 atm) at various temperatures for two values of minimum detectable absorbance.

Tables (4)

Tables Icon

Table 1 Spectroscopic Parameters of R(6) Manifold of 2ν 3 Band of CH4 at 296 K13,14

Tables Icon

Table 2 Conditions in the Cell for the Line-Strength Measurements

Tables Icon

Table 3 Comparison of the Line Strengths at 296 K Measured in this Work with Those from Ref. 14 a

Tables Icon

Table 4 Coefficients of the Polynomial Expression from HITRAN for the Partition Function of CH4 13

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T ν = ( I I 0 ) ν = exp ( k ν L ) ,
k ν = i = 1 N P abs S i ( T ) ϕ ( ν ν 0 , i , a i ) ,
a i = ln 2 Δ ν c , i Δ ν D , i ,
Δ ν D , i = 7 . 1623 × 10 7 ν 0 , i ( T / M ) 1 / 2 ,
Δ ν c , i = P j ( X j 2 γ j , i ) ,
S i ( T ) = N L ( 273 T ) ( π e 2 m e c 2 ) g 1 , i Q ( T ) × exp ( h c E i k T ) f i [ 1 exp ( h c ν 0 , i k T ) ] ,
S i ( T ) = S i ( T 0 ) Q ( T 0 ) Q ( T ) ( T 0 T ) exp [ h c E i k ( 1 T 1 T 0 ) ] × [ 1 exp ( h c ν 0 , i k T ) ] [ 1 exp ( h c ν 0 , i k T 0 ) ] 1 .
K = ν k ν d ν = P abs i = 1 N S i ( T ) ,
Q ( T ) = Q nuclear Q rot Q vib ,
Q nuclear = ( 2 I C + 1 ) ( 2 I H + 1 ) 4 ,
Q rot ( T ) = 1 σ [ ( π B 3 ) ( k T h c ) 3 ] 0 . 5 ,
Q vib ( T ) = [ 1 exp ( h c ν 1 k T ) ] 1 [ 1 exp ( h c ν 2 k T ) ] 2 × [ 1 exp ( h c ν 3 k T ) ] 3 [ 1 exp ( h c ν 4 k T ) ] 3 ,
Q ( T ) = a + b T + c T 2 + d T 3 .

Metrics