Abstract

We have employed tunable diode laser absorption spectroscopy (TDLAS) to characterize low-pressure premixed CH4/O2/Ar flames inhibited with Halon 1301 (CF3Br) and the candidate Halon alternative compounds FE-13 (CF3H) and HFC-125 (C2F5H). This work is part of a larger program designed to help identify replacement fire-suppression compounds for the currently used Halon 1301. We have used CO two-line thermometry to profile the temperature in low-pressure laminar flames and have determined concentration profiles for a large number of flame species, including reactive intermediates. To date, we have detected 12 flame species by using TDLAS in our laboratory and report on seven of them here: CH4, H2O, CO, CF2O, CF2H2, CF3H, and CF4. To the best of our knowledge, this is the first time the last four species have been observed in flame by the use of TDLAS. Our data are important for validating the detailed kinetic mechanisms of chemical flame inhibition. Our results indicate that TDLAS is a versatile and powerful diagnostic technique for studying combustion processes.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, 23–25 November 1992, Copenhagen, Doc. UNEP/OzL.Pro.4/15 (United Nations Environmental Program, Ozone Secretariat, Nairobi, Kenya, 1992). The full text of the London and Copenhagen amendments to the Montreal Protocol on Substances that Deplete the Ozone Layer, with the Montreal Protocol attached as an appendix can be found at gopher://gopher.law.cornell.edu/00/foreign/fletcher/MONTREAL-1992.txt .
  2. P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
    [Crossref]
  3. D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).
  4. V. Babushok, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994).
  5. R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).
  6. J. Wormhoudt, “Radical and molecular product concentration measurements in CH4 RF plasmas by infrared tunable diode laser absorption,” in Vol. 165 of Proceedings of the Materials Research Society Symposium (Materials Research Society, Pittsburgh, Pa., 1990), pp. 35–40.
    [Crossref]
  7. J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
    [Crossref] [PubMed]
  8. M. Vaidyanathan, D. K. Killinger, “Tunable 1.7-μm laser spectrometer for optical absorption measurements of CH4, C2H4, and high-temperature HCl,” Appl. Opt. 32, 847–856 (1993).
    [Crossref] [PubMed]
  9. K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Frequency modulated diode laser spectroscopy of detection of combustion intermediates,” in Proceedings of the JANNAF Thirty-Second Combustion Subcommittee Meeting (Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, Md. 21044, 1995).
  10. K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Tomographic analysis of CO absorption in a low-pressure flame,” Appl. Opt. 34, 3318–3324 (1995).
    [Crossref] [PubMed]
  11. J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame 14, 270–272 (1974).
  12. P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
    [Crossref]
  13. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 11.
  14. J. Humliček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
    [Crossref]
  15. G. Linteris, G. Gmurczyk, “Parametric studies of hydrogen fluoride formation in suppressed flames,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.
  16. V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.
  17. G. Whaley, Amorphous Materils, Garland, TX, fact sheet on “Chalcogenide glass infrared fibers for application in the 1–11 μm wavelength range,” (Amorphous Materials, 3130 Benton, Garland, Tex. 75042, January1996).
  18. W. Robinson, Siecor Optical Cable, Hickory, N.C., 28601 (private communication, January1996).
  19. K. L. McNesby, R. G. Daniel, J. M. Widder, A. W. Miziolek, “Spectroscopic investigation of atmospheric diffusion flames inhibited by Halons and their alternatives,” Appl. Spectrosc. 50, 126–130 (1996).
    [Crossref]
  20. M. Smooke, Yale University, New Haven, Conn. 06518 (private communication, 1994, 1995).
  21. D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

1996 (1)

1995 (1)

1993 (1)

1991 (1)

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

1980 (1)

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[Crossref]

1979 (1)

J. Humliček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[Crossref]

1974 (1)

J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame 14, 270–272 (1974).

Babushok, V.

V. Babushok, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994).

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 11.

Bomse, D. S.

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

Burgess, D. R. F.

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
[Crossref]

D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

Daniel, R. G.

K. L. McNesby, R. G. Daniel, J. M. Widder, A. W. Miziolek, “Spectroscopic investigation of atmospheric diffusion flames inhibited by Halons and their alternatives,” Appl. Spectrosc. 50, 126–130 (1996).
[Crossref]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Tomographic analysis of CO absorption in a low-pressure flame,” Appl. Opt. 34, 3318–3324 (1995).
[Crossref] [PubMed]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Frequency modulated diode laser spectroscopy of detection of combustion intermediates,” in Proceedings of the JANNAF Thirty-Second Combustion Subcommittee Meeting (Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, Md. 21044, 1995).

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

Gmurczyk, G.

G. Linteris, G. Gmurczyk, “Parametric studies of hydrogen fluoride formation in suppressed flames,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

Hanson, R. K.

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[Crossref]

Houde, D. C.

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

Humlicek, J.

J. Humliček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[Crossref]

Kent, J. H.

J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame 14, 270–272 (1974).

Killinger, D. K.

Linteris, G.

G. Linteris, G. Gmurczyk, “Parametric studies of hydrogen fluoride formation in suppressed flames,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

McNesby, K. L.

K. L. McNesby, R. G. Daniel, J. M. Widder, A. W. Miziolek, “Spectroscopic investigation of atmospheric diffusion flames inhibited by Halons and their alternatives,” Appl. Spectrosc. 50, 126–130 (1996).
[Crossref]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Tomographic analysis of CO absorption in a low-pressure flame,” Appl. Opt. 34, 3318–3324 (1995).
[Crossref] [PubMed]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Frequency modulated diode laser spectroscopy of detection of combustion intermediates,” in Proceedings of the JANNAF Thirty-Second Combustion Subcommittee Meeting (Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, Md. 21044, 1995).

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

Miziolek, A. W.

K. L. McNesby, R. G. Daniel, J. M. Widder, A. W. Miziolek, “Spectroscopic investigation of atmospheric diffusion flames inhibited by Halons and their alternatives,” Appl. Spectrosc. 50, 126–130 (1996).
[Crossref]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Tomographic analysis of CO absorption in a low-pressure flame,” Appl. Opt. 34, 3318–3324 (1995).
[Crossref] [PubMed]

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Frequency modulated diode laser spectroscopy of detection of combustion intermediates,” in Proceedings of the JANNAF Thirty-Second Combustion Subcommittee Meeting (Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, Md. 21044, 1995).

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

Oh, D. B.

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

Robinson, W.

W. Robinson, Siecor Optical Cable, Hickory, N.C., 28601 (private communication, January1996).

Silver, J. A.

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

Smooke, M.

M. Smooke, Yale University, New Haven, Conn. 06518 (private communication, 1994, 1995).

Stanton, A. C.

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

Tsang, W.

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
[Crossref]

V. Babushok, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994).

D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).

Vaidyanathan, M.

Varghese, P. L.

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[Crossref]

Westmoreland, P. R.

D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).

P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
[Crossref]

Whaley, G.

G. Whaley, Amorphous Materils, Garland, TX, fact sheet on “Chalcogenide glass infrared fibers for application in the 1–11 μm wavelength range,” (Amorphous Materials, 3130 Benton, Garland, Tex. 75042, January1996).

Widder, J. M.

Wormhoudt, J.

J. Wormhoudt, “Radical and molecular product concentration measurements in CH4 RF plasmas by infrared tunable diode laser absorption,” in Vol. 165 of Proceedings of the Materials Research Society Symposium (Materials Research Society, Pittsburgh, Pa., 1990), pp. 35–40.
[Crossref]

Zachariah, M. R.

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
[Crossref]

D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).

Appl. Opt. (1)

J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser movements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Combust. Flame (1)

J. H. Kent, “A noncatalytic coating for platinum-rhodium thermocouples,” Combust. Flame 14, 270–272 (1974).

J. Quant. Spectrosc. Radiat. Transfer (2)

P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[Crossref]

J. Humliček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[Crossref]

Other (14)

G. Linteris, G. Gmurczyk, “Parametric studies of hydrogen fluoride formation in suppressed flames,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

V. Babushok, D. R. F. Burgess, G. Linteris, W. Tsang, A. W. Miziolek, “Modeling of hydrogen fluoride formation from flame suppressants during combustion,” presented at the Halon Options Technical Working Conference, Albuquerque, N.M., 9–11 May 1995.

G. Whaley, Amorphous Materils, Garland, TX, fact sheet on “Chalcogenide glass infrared fibers for application in the 1–11 μm wavelength range,” (Amorphous Materials, 3130 Benton, Garland, Tex. 75042, January1996).

W. Robinson, Siecor Optical Cable, Hickory, N.C., 28601 (private communication, January1996).

M. Smooke, Yale University, New Haven, Conn. 06518 (private communication, 1994, 1995).

D. S. Bomse, D. C. Houde, D. B. Oh, J. A. Silver, A. C. Stanton, “Diode laser spectroscopy for on-line chemical analysis,” in Optically Based Methods for Process Analysis, D. S. Bomse, H. Brittain, S. Farquharson, J. M. Lerner, A. J. Rein, C. Sohl, T. R. Todd, L. Weyer, eds., Proc. SPIE1681, 138–148 (1992).

K. L. McNesby, R. G. Daniel, A. W. Miziolek, “Frequency modulated diode laser spectroscopy of detection of combustion intermediates,” in Proceedings of the JANNAF Thirty-Second Combustion Subcommittee Meeting (Chemical Propulsion Information Agency, Johns Hopkins University, Columbia, Md. 21044, 1995).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 11.

Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, 23–25 November 1992, Copenhagen, Doc. UNEP/OzL.Pro.4/15 (United Nations Environmental Program, Ozone Secretariat, Nairobi, Kenya, 1992). The full text of the London and Copenhagen amendments to the Montreal Protocol on Substances that Deplete the Ozone Layer, with the Montreal Protocol attached as an appendix can be found at gopher://gopher.law.cornell.edu/00/foreign/fletcher/MONTREAL-1992.txt .

P. R. Westmoreland, D. R. F. Burgess, W. Tsang, M. R. Zachariah, “Fluoromethane chemistry and its role in flames suppression,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994).
[Crossref]

D. R. F. Burgess, M. R. Zachariah, W. Tsang, P. R. Westmoreland, “Thermochemical and chemical kinetic data for fluorinated hydrocarbons,” NIST Tech. Note1412 (National Institute of Standards and Technology, Gaithersburg, Md., 1995).

V. Babushok, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994).

R. G. Daniel, K. L. McNesby, A. W. Miziolek, U.S. Army Research Laboratory, Aberdeen Proving Ground Md. 21005, and D. R. F. Burgess, M. R. Zachariah, W. Tsang, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (private communication, 1994–1995).

J. Wormhoudt, “Radical and molecular product concentration measurements in CH4 RF plasmas by infrared tunable diode laser absorption,” in Vol. 165 of Proceedings of the Materials Research Society Symposium (Materials Research Society, Pittsburgh, Pa., 1990), pp. 35–40.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic representation of the experimental apparatus. LN2, liquid nitrogen.

Fig. 2
Fig. 2

Sample spectrum of CO in a 20-Torr flame. The inset shows a blowup view of the data plus fit and the residual of the fit of the P12 (3, 2) transition.

Fig. 3
Fig. 3

Flame temperature profiles of an uninhibited CH4/O2 flame measured with CO two-line thermometry and with fine-wire thermocouples.

Fig. 4
Fig. 4

CO concentration and temperature profiles of 20-Torr, stoichiometric, premixed CH4/O2 flames inhibited with 1.0% of the fluoromethanes.

Fig. 5
Fig. 5

Disappearance profiles of CH4 in 32-Torr inhibited flames relative to an uninhibited flame.

Fig. 6
Fig. 6

Appearance profiles of H2O in 32-Torr inhibited flames relative to an uninhibited flame.

Fig. 7
Fig. 7

CH4 disappearance profiles (circles) and H2O appearance profiles (triangles) for an uninhibited flame and a flame inhibited with 1.0% FE-13 (CF3H). The shift in the flame front away from the burner is attributed to a decrease in the flame speed.

Fig. 8
Fig. 8

Three-dimensional spectral profiles of the disappearance of the fluoromethanes added to CH4/O2/Ar flames at 20 Torr. (a) All features are attributed to CF4, which does not appear to be destroyed in the flame; (b) features marked are attributed to CF2H2, which rapidly disappear; (c) features attributed to CF3H disappear at a rate slower than those of CF2H2.

Fig. 9
Fig. 9

(a) Calculated disappearance profiles of the fluoromethanes in a freely propagating, 20-Torr CH4/O2 flame. The flame front is at 0 mm. (b) Experimental disappearance profiles of the fluoromethanes in burner-stabilized, 20-Torr CH4/O2 flames. The flame front is at 4 mm for all three flames. ppm, parts in 106.

Fig. 10
Fig. 10

Appearance profiles of CF2O for 32-Torr CH4/O2/Ar flames inhibited with agents at 1.0% total volume.

Fig. 11
Fig. 11

Three-dimensional spectral profile of CH4/O2/Ar flames at 1259.2 cm−1 as a function of height above the burner in millimeters: (a) uninhibited flame, (b) flame inhibited with 1.0% HFC-125, (c) flame inhibited with 1.0% FE-13, (d) flame inhibited with 1.0% Halon 1301.

Tables (1)

Tables Icon

Table 1 List of Species Detected by TDL Absorption Spectroscopy

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ ( ν ) = ( I I 0 ) = exp { [ S υ J ( T ) ϕ ( ν ν 0 ) L P x ] } ,
τ ( ν ) = i exp { [ α i ( T ) V i ( a , χ ) ] } + Δ ,
F ( T ) = S υ J II ( T ) S υ J I ( T ) = α II ( T ) α I ( T ) .
P x = α I ( T ) S υ J I ( T ) .

Metrics