Abstract

Inside the combustion chamber of a spark-ignition engine, NO fluorescence is excited with a narrow-band tunable KrF excimer laser. The fluorescence light is detected by an intensified CCD camera that yields images of the NO distributions. Rotational–vibrational transitions of NO are excited by the A 2Σ+X 2Π (0, 2) band system around 248 nm. Single laser shot planar NO distributions are obtained with good signal-to-noise ratio at all crank angles and allow us to locate areas of NO formation during combustion. The pressure within the combustion chamber is measured simultaneously with the NO distributions, which allows the evaluation of correlations between indicated work and NO formation. The crank-angle-resolved sequences of two-dimensional NO distributions and averaged pressure traces are presented for different engine-operating conditions. In addition, laser-induced predissociation fluorescence of OH excited by the same laser source is measured in order to visualize the corresponding flame front propagation and to compare the time of formation of NO relative to that of OH.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).
  2. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [CrossRef] [PubMed]
  3. M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
    [CrossRef] [PubMed]
  4. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
    [CrossRef]
  5. M. Frodermann, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany (personal communication, 1995).
  6. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
    [CrossRef]
  7. B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  8. T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
    [CrossRef]
  9. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
  10. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  11. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  12. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
    [CrossRef]
  13. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (υ″ = 0) and O2 (υ″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
    [CrossRef] [PubMed]
  14. A. Serpengüzel, R. T. Hahn, W. P. Acker, “Single pulse planar laser induced fluorescence imaging of hydroxyl radicals in a spark ignition engine,” SAE paper 932701 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  15. E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).
  16. C. Niederbäumer, “Rotationsaufgelöste Absorptions spektroskopie an NO- und OH-Molekülen zur Untersuchung von Verbrennungsprozessen,” Diploma Thesis (Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany, 1994).
  17. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.
  18. G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
    [CrossRef]
  19. W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 6, 907–918 (1993).
    [CrossRef]
  20. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), Chap. 11, pp. 578–582.

1996

G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
[CrossRef]

1993

W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 6, 907–918 (1993).
[CrossRef]

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

1992

1991

1990

Acker, W. P.

A. Serpengüzel, R. T. Hahn, W. P. Acker, “Single pulse planar laser induced fluorescence imaging of hydroxyl radicals in a spark ignition engine,” SAE paper 932701 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Alatas, B.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Andresen, P.

G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
[CrossRef]

W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 6, 907–918 (1993).
[CrossRef]

P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (υ″ = 0) and O2 (υ″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
[CrossRef] [PubMed]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Arnold, A.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Beushausen, V.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Bräumer, A.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Brugman, T. M.

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Dinkelacker, F.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Drabbels, M.

Dreier, T.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Dreizler, A.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Drewes, V.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Ebben, M.

Friedrich, A.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

Frodermann, M.

M. Frodermann, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany (personal communication, 1995).

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Grünefeld, G.

G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
[CrossRef]

W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 6, 907–918 (1993).
[CrossRef]

Gu, Y.

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

Hahn, R. T.

A. Serpengüzel, R. T. Hahn, W. P. Acker, “Single pulse planar laser induced fluorescence imaging of hydroxyl radicals in a spark ignition engine,” SAE paper 932701 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Han, A.

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

Hanson, R. K.

Heitzmann, T.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Hentschel, W.

P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (υ″ = 0) and O2 (υ″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
[CrossRef] [PubMed]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Heywood, J. B.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), Chap. 11, pp. 578–582.

Hitchcock, L. M.

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

Huigen, G.

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Hüwel, L.

Jost, D.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

Klein-Douwel, R.

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Knapp, M.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Koch, A.

Kolke, R.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

Litzinger, T. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Luczak, A.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Maly, R.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Manz, P.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

McMillin, B. K.

Meijer, G.

Monkhouse, P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Niederbäumer, C.

C. Niederbäumer, “Rotationsaufgelöste Absorptions spektroskopie an NO- und OH-Molekülen zur Untersuchung von Verbrennungsprozessen,” Diploma Thesis (Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany, 1994).

Oppermann, W.

Palmer, J. L.

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Pinson, J. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Reck, G. P.

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

Reckers, W.

Rodt, St.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

Rothe, E.

Rothe, E. W.

G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
[CrossRef]

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

Rudolf, W.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

Santavicca, D. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Schäfer, M.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Schindler, K.-P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Schlüter, H.

Seitzman, J. M.

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

Serpengüzel, A.

A. Serpengüzel, R. T. Hahn, W. P. Acker, “Single pulse planar laser induced fluorescence imaging of hydroxyl radicals in a spark ignition engine,” SAE paper 932701 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Sick, V.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Tappe, M.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

ter Meulen, J. J.

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
[CrossRef] [PubMed]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

van Walwijk, E.

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Versluis, M.

Voges, H.

Wolff, D.

Wolfrum, J.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

Zahn, M.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

Appl. Opt.

Appl. Phys. B

R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

T. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Appl. Phys. B.

G. Grünefeld, H. Schlüter, P. Andresen, E. W. Rothe, “Operation of a tunable excimer laser with KrF and ArF without Cassegrain optics,” Appl. Phys. B. 62, 241–247 (1996).
[CrossRef]

Other

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), Chap. 11, pp. 578–582.

St. Rodt, A. Friedrich, D. Jost, R. Kolke, W. Rudolf, M. Tappe, Passenger Cars 2000—Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community (Federal Environmental Agency, Berlin, 1995).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” SAE paper 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).

M. Frodermann, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany (personal communication, 1995).

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” in the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
[CrossRef]

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI diesel engine via planar imaging,” SAE paper 930973 (Society of Automotive Engineers, Warrendale, Pa., 1993).

A. Serpengüzel, R. T. Hahn, W. P. Acker, “Single pulse planar laser induced fluorescence imaging of hydroxyl radicals in a spark ignition engine,” SAE paper 932701 (Society of Automotive Engineers, Warrendale, Pa., 1993).

E. W. Rothe, A. Han, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994).

C. Niederbäumer, “Rotationsaufgelöste Absorptions spektroskopie an NO- und OH-Molekülen zur Untersuchung von Verbrennungsprozessen,” Diploma Thesis (Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany, 1994).

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Section of the optically probed cylinder. Optical access is achieved by windows in the cylinder liner and piston.

Fig. 2
Fig. 2

Section of the optically probed cylinder with experimental setup for transmission measurements.

Fig. 3
Fig. 3

CA-resolved transmission of the combustion chamber of a fired SI engine. The measurements were carried out with a deuterium lamp as light source. The relative transmission is given in gray values according to the gray scale in Fig. 4.

Fig. 4
Fig. 4

CA-resolved transmission of the combustion chamber of a fired SI engine. The measurements were carried out with a Xe lamp as light source during engine warm-up. The relative transmission is given in gray values according to the gray scale on the right-hand side.

Fig. 5
Fig. 5

CA-resolved relative transmission of the combustion chamber of a fired SI engine for different wavelengths. The TDC of combustion is at 0° CA.

Fig. 6
Fig. 6

(a) Excitation-emission spectrum taken from the NO-seeded calibration flame. Note that the logarithm of the spectral intensities is plotted. The displayed gray scale has been applied after this data manipulation. (b) Profile of the excitation-emission spectrum at the excitation frequency ν = 40,332 cm−1.

Fig. 7
Fig. 7

Two sequences of CA-resolved NO LIF images for a stoichiometric AFR. The corresponding CA’s are shown to the right of the images. The NO LIF intensity is color coded according to the color scale shown in the middle.

Fig. 8
Fig. 8

Two sequences of CA-resolved NO LIF images for a fuel-rich AFR (λ = 0.85). The corresponding CA’s are shown to the right of the images. The NO LIF intensity is color coded according to the color scale shown in the middle.

Fig. 9
Fig. 9

Sequences of OH LIPF images. The numbers to the right of the images indicate the corresponding CA’s. The applied gray scale is shown in Fig. 6(a).

Fig. 10
Fig. 10

Averaged NO LIF intensity versus CA for engine operating with fuel-rich and stoichiometric AFR’s. Each data point gives the average NO LIF intensity of the entire images in Figs. 7 and 8, i.e., each data point is based on two LIF images.

Fig. 11
Fig. 11

Cylinder pressure versus CA for engine operating with a fuel-rich AFR (λ = 0.85). The upper curve shows the maximum pressure value, the curve in the middle shows the average pressure value, and the lower curve shows the minimum pressure of 30 pressure traces for each CA.

Fig. 12
Fig. 12

Cylinder pressure versus CA for engine operating with a stoichiometric AFR. The upper curve shows the maximum pressure value, the curve in the middle shows the average pressure value, and the lower curve shows the minimum pressure of 30 pressure traces for each CA.

Metrics