Abstract

Photofragmentation (PF) and subsequent nitric oxide (NO) laser-induced fluorescence (LIF) is being developed to measure the concentration of energetic materials (EM’s) in soil and other media. Laser radiation near 226 nm photodissociates gas-phase EM to NO2, which predissociates into NO that gives an intense luminescence. The EM concentration is inferred from the intensity of the NO fluorescence. We have studied the factors that affect the PF–LIF signal intensity, including the effect of buffer gas on the LIF spectrum of pure NO, the effect of 2,4,6-trinitrotoluene (TNT) pressure on the PF–LIF spectrum, the effect of buffer-gas pressure on the PF–LIF signal intensity of pure TNT, and the effect of temperature on the PF–LIF spectra of pure TNT and of TNT in simulated soil. Heating of the TNT sample above 343 K was found to increase the magnitude of the PF-LIF signal intensity significantly, but also was found to cause physical and chemical changes in the TNT sample. The effects of heating and evacuating on the TNT sample were investigated. TNT concentration calibration curves were obtained for TNT in simulated soil mixtures. The limit of detection of TNT in soil was estimated to be 40 parts in 109.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.
  2. M. L. Hampton, W. E. Sisk, “Biological treatment of soil contaminated with TNT in a slurry reactor: a pilot field scale demonstration,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Atlanta, 1995), p. 529.
  3. P. M. Bradley, F. H. Chapelle, “Factors affecting 2,4,6-trinitrotoluene degradation in contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 531.
  4. M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.
  5. E. R. Cespedes, B. H. Miles, S. H. Lieberman, “Development of optical sensors for the site characterization and analysis penetrometer system (SCAPS),” in Optical Sensing for Environmental Monitoring, SP-89 (Air and Waste Management Association, Atlanta, Ga., 1994), pp. 621–632.
  6. J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).
  7. W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).
  8. D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).
  9. J. Schendel, R. Hohmann, E. L. Wehry, “Laser photolytic fragmentation-fluorescence spectrometric determination of nitromethane,” Appl. Spectrosc. 41, 640–644 (1987).
    [CrossRef]
  10. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
    [CrossRef]
  11. J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).
  12. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
    [CrossRef]
  13. C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
    [CrossRef]
  14. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907– 1912 (1993).
    [CrossRef]
  15. S. D. Huang, L. Kolaitis, D. M. Lubman, “Detection of explosive using laser desorption in ion mobility spectroscopy/mass spectrometry,” Appl. Spectrosc. 41, 1371–1376 (1987).
    [CrossRef]
  16. D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation, laser-induced fluorescence (PF-LIF) spectroscopy,” M. S. thesis (Department of Physics, Mississippi State University, 1996).
  17. M. Asscher, Y. Haas, “The quenching mechanism of electronically excited Rydberg states of nitric oxide,” J. Chem. Phys. 76, 2115–2126 (1982).
    [CrossRef]

1993 (3)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907– 1912 (1993).
[CrossRef]

1992 (2)

J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).

D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).

1989 (1)

C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
[CrossRef]

1987 (2)

1985 (1)

J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).

1982 (1)

M. Asscher, Y. Haas, “The quenching mechanism of electronically excited Rydberg states of nitric oxide,” J. Chem. Phys. 76, 2115–2126 (1982).
[CrossRef]

Adams, J. W.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

Asscher, M.

M. Asscher, Y. Haas, “The quenching mechanism of electronically excited Rydberg states of nitric oxide,” J. Chem. Phys. 76, 2115–2126 (1982).
[CrossRef]

Bradley, P. M.

P. M. Bradley, F. H. Chapelle, “Factors affecting 2,4,6-trinitrotoluene degradation in contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 531.

Buttner, W. J.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

Capellos, C.

C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
[CrossRef]

Cespedes, E. R.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

E. R. Cespedes, B. H. Miles, S. H. Lieberman, “Development of optical sensors for the site characterization and analysis penetrometer system (SCAPS),” in Optical Sensing for Environmental Monitoring, SP-89 (Air and Waste Management Association, Atlanta, Ga., 1994), pp. 621–632.

Chapelle, F. H.

P. M. Bradley, F. H. Chapelle, “Factors affecting 2,4,6-trinitrotoluene degradation in contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 531.

Clark, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Constant, W. D.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

Cooper, S. S.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

Davis, W. M.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

Findlay, M. W.

J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).

Fredrickson, H.

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

Guimbellot, D.

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

Haas, Y.

M. Asscher, Y. Haas, “The quenching mechanism of electronically excited Rydberg states of nitric oxide,” J. Chem. Phys. 76, 2115–2126 (1982).
[CrossRef]

Hampton, M. L.

M. L. Hampton, W. E. Sisk, “Biological treatment of soil contaminated with TNT in a slurry reactor: a pilot field scale demonstration,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Atlanta, 1995), p. 529.

Harvey, S.

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

Hill, D.

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

Hohmann, R.

Houston, P. L.

D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).

Huang, S. D.

Jeffries, J. B.

J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).

Jusinski, L. E.

J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).

Kolaitis, L.

Ledingham, K. W. D.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Lemire, G. W.

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907– 1912 (1993).
[CrossRef]

Liang, Y. L.

C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
[CrossRef]

Lieberman, S. H.

E. R. Cespedes, B. H. Miles, S. H. Lieberman, “Development of optical sensors for the site characterization and analysis penetrometer system (SCAPS),” in Optical Sensing for Environmental Monitoring, SP-89 (Air and Waste Management Association, Atlanta, Ga., 1994), pp. 621–632.

Lubman, D. M.

Marshall, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Miles, B. H.

E. R. Cespedes, B. H. Miles, S. H. Lieberman, “Development of optical sensors for the site characterization and analysis penetrometer system (SCAPS),” in Optical Sensing for Environmental Monitoring, SP-89 (Air and Waste Management Association, Atlanta, Ga., 1994), pp. 621–632.

Moss, D. B.

D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).

Papagiannakopoulos, P.

C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
[CrossRef]

Quaisi, K.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

Raiche, G. A.

J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).

Sander, J.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Sausa, R. C.

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907– 1912 (1993).
[CrossRef]

Schendel, J.

Simeonsson, J. B.

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation/ionization spectrometry,” Appl. Spectrosc. 47, 1907– 1912 (1993).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Singhal, R. P.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

Sisk, W. E.

M. L. Hampton, W. E. Sisk, “Biological treatment of soil contaminated with TNT in a slurry reactor: a pilot field scale demonstration,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Atlanta, 1995), p. 529.

Stetter, J. R.

J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).

Thibodeaux, L. J.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

Trentelman, A. K.

D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).

Valsaraj, K. T.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

Vickers, W. C.

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

Wehry, E. L.

Wilson, M. B.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

Wu, D.

D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation, laser-induced fluorescence (PF-LIF) spectroscopy,” M. S. thesis (Department of Physics, Mississippi State University, 1996).

Zappi, M.

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

Zaromb, S.

J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).

Anal. Chem. (1)

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonance enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Appl. Phys. (1)

J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B55, 76–83 (1992).

Appl. Spectrosc. (3)

Chem. Phys. (1)

D. B. Moss, A. K. Trentelman, P. L. Houston, “193 nm photodissociation dynamics of nitromethane,” J”. Chem. Phys. 96, 237–247 (1992).

Chem. Phys. Lett. (1)

C. Capellos, P. Papagiannakopoulos, Y. L. Liang, “The 248 nm photodecomposition of hexahydro-1,3,5-triazine,” Chem. Phys. Lett. 164, 533 (1989).
[CrossRef]

Int. J. Mass Spectrom. Ion Processes (1)

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singhal, “Laser ionization studies of nitroammine and NOx (x = 1 or 2) molecules in the region 224–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
[CrossRef]

J. Chem. Phys. (1)

M. Asscher, Y. Haas, “The quenching mechanism of electronically excited Rydberg states of nitric oxide,” J. Chem. Phys. 76, 2115–2126 (1982).
[CrossRef]

Sensors Actuators (1)

J. R. Stetter, S. Zaromb, M. W. Findlay, “Monitoring electrochemically active compounds by amperometric gas sensors,” Sensors Actuators 6, 269–288 (1985).

Other (7)

W. J. Buttner, W. C. Vickers, J. W. Adams, E. R. Cespedes, S. S. Cooper, W. M. Davis, “Development and testing of cone penetrometer sensor probe for in situ detection of explosive contaminants,” in Proceedings of the Fourth Symposium on Field Screening Methods for Hazardous Waste and Toxic Chemicals (Air and Waste Management Association, Las Vegas, Nev., 1995).

S. Harvey, M. Zappi, H. Fredrickson, D. Guimbellot, D. Hill, “Using surfactants to increase the bioavailability of explosive compounds in low level contaminated soil within bioslurry systems,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 1027.

M. L. Hampton, W. E. Sisk, “Biological treatment of soil contaminated with TNT in a slurry reactor: a pilot field scale demonstration,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Atlanta, 1995), p. 529.

P. M. Bradley, F. H. Chapelle, “Factors affecting 2,4,6-trinitrotoluene degradation in contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 531.

M. B. Wilson, K. Quaisi, W. D. Constant, K. T. Valsaraj, L. J. Thibodeaux, “A laboratory-scale riffle-bed reactor system for 2,4,6-trinitrotoluene contaminated soil,” in Extended Abstracts for the Emerging Technologies in Hazardous Waste Management VII Conference (American Chemical Society, Washington, D.C., 1995), p. 532.

E. R. Cespedes, B. H. Miles, S. H. Lieberman, “Development of optical sensors for the site characterization and analysis penetrometer system (SCAPS),” in Optical Sensing for Environmental Monitoring, SP-89 (Air and Waste Management Association, Atlanta, Ga., 1994), pp. 621–632.

D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation, laser-induced fluorescence (PF-LIF) spectroscopy,” M. S. thesis (Department of Physics, Mississippi State University, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Partial energy-level diagram of NO that also shows the predissociation of NO2 to NO for LIF detection.

Fig. 2
Fig. 2

PF–LIF experimental setup: PM, photomultiplier; BD’s, beam dumps; WF, window and filter; M3, dichroic mirror (226 nm); HS, harmonic separator; M1’s, dichroic mirror (335 nm); M2, dichroic mirror (532 nm); P’s, prisms; T, telescope;A, aperture.

Fig. 3
Fig. 3

PF–LIF spectra from a pure TNT sample at (a) 300 K, (b) 373 K.

Fig. 4
Fig. 4

PF–LIF spectra from 100-ppm TNT in soil at (a) 300 K, (b) 373 K.

Fig. 5
Fig. 5

Relationship between the PF–LIF signal intensity and N2 gas pressure at room temperature.

Fig. 6
Fig. 6

Relationship between the PF–LIF signal intensity and temperature for a pure TNT sample for different heating cycles (1, 2, 3). The same sample was used for all measurements.

Fig. 7
Fig. 7

Changes of the PF–LIF signal intensity with heating cycles for a pure TNT sample at 353 K.

Fig. 8
Fig. 8

Relationship between the PF–LIF signal intensity and temperature with a 100-ppm TNT in soil for different measurement cycles. The same sample was used for all measurements.

Fig. 9
Fig. 9

Calibration curve for TNT from soil at different soil temperatures.

Metrics