Abstract

We investigate thin phase polarization holographic gratings recorded with two waves with orthogonal linear polarizations in materials in which illumination with linearly/circularly polarized light gives rise to linear/circular birefringence. The theoretical analysis shows that the presence of circular photoanisotropy changes significantly the diffraction characteristics of the gratings. The intensities of the waves diffracted in the +1 and −1 orders of diffraction and their ratio depend substantially on the reconstructing-wave polarization. Experiments with films of side-chain liquid-crystalline azobenzene polyester that is a photoanisotropic material of the considered type confirm the unusual polarization properties. It is shown that polarization holography may be used for real-time simultaneous measurement of photoinduced linear and circular birefringence.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. a new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  2. M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
    [CrossRef]
  3. M. Eich, J. H. Wendorff, “Laser induced gratings and spectroscopy of monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428–1436 (1990).
    [CrossRef]
  4. A. G. Chen, D. J. Brady, “Surface stabilized holography in an azo dye doped liquid crystal,” Opt. Lett. 17, 1231–1233 (1992).
    [CrossRef] [PubMed]
  5. U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
    [CrossRef]
  6. Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
    [CrossRef]
  7. A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
    [CrossRef]
  8. S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
    [CrossRef] [PubMed]
  9. Z. Sekkat, M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Metal 54, 373–379 (1993).
    [CrossRef]
  10. G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
    [CrossRef]
  11. S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
    [CrossRef]
  12. H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
    [CrossRef]
  13. M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
    [CrossRef]
  14. T. D. Ebralidze, “Weigert hologram,” Appl. Opt. 34, 1357–1362 (1995).
    [CrossRef] [PubMed]
  15. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
    [CrossRef]
  16. T. Huang, K. H. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–386 (1991).
    [CrossRef]
  17. T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]
  18. L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  19. Sh. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–174 (1972).
  20. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

1995 (3)

H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
[CrossRef]

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

T. D. Ebralidze, “Weigert hologram,” Appl. Opt. 34, 1357–1362 (1995).
[CrossRef] [PubMed]

1994 (1)

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

1993 (3)

S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
[CrossRef]

Z. Sekkat, M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Metal 54, 373–379 (1993).
[CrossRef]

T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

1992 (5)

A. G. Chen, D. J. Brady, “Surface stabilized holography in an azo dye doped liquid crystal,” Opt. Lett. 17, 1231–1233 (1992).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
[CrossRef]

A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

1990 (1)

1989 (1)

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

1984 (2)

1972 (1)

Sh. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–174 (1972).

1955 (1)

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

Akiyama, H.

H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
[CrossRef]

Andruzzi, F.

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Barnik, M. L.

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Boeffel, C.

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Brady, D. J.

Chen, A. G.

Chi, L. F.

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

Dumont, M.

Z. Sekkat, M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Metal 54, 373–379 (1993).
[CrossRef]

Ebralidze, T. D.

Eich, M.

Fuchs, H.

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

Geue, T.

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

Huang, T.

T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. H. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–386 (1991).
[CrossRef]

Hvilsted, S.

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Ichimura, K.

H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
[CrossRef]

Imai, Y.

S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
[CrossRef]

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Iwamoto, M.

Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
[CrossRef]

Kakichashvili, Sh.

Sh. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–174 (1972).

Kakimoto, M. A.

S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
[CrossRef]

Kanai, Y.

Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
[CrossRef]

Kharichev, V. A.

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Kudo, K.

H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
[CrossRef]

Kulinna, C.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

Lösche, M.

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

Majima, Y.

Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
[CrossRef]

Mobius, G.

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

Natanson, A.

A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

Nikolova, L.

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. a new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Palto, S. P.

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Pietsch, U.

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

Ramanujam, P. S.

S. Hvilsted, F. Andruzzi, P. S. Ramanujam, “Side-chain liquid crystalline polyesters for optical information storage,” Opt. Lett. 17, 1234–1236 (1992).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Reynolds, N.

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Ringsdorf, H.

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

Rochon, P.

A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

Schönhoff, M.

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

Sekkat, Z.

Z. Sekkat, M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Metal 54, 373–379 (1993).
[CrossRef]

Shtykov, N. M.

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Siester, H. W.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

Spiess, H. W.

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Stumpe, J.

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

Todorov, T.

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. a new high efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

Tomova, N.

Wagner, K. H.

T. Huang, K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. H. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–386 (1991).
[CrossRef]

Wendorff, J. H.

Wiesner, U.

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Xie, S.

A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

Yokyama, S.

S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
[CrossRef]

Yudin, S. G.

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

Y. Majima, Y. Kanai, M. Iwamoto, “Maxwell displace-current generation due to trans–cis photoisomerization in monolayer Langmuir–Blodgett film,” J. Appl. Phys. 72, 1637–1641 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Langmuir (2)

S. Yokyama, M. A. Kakimoto, Y. Imai, “Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir–Blodgett films having photoresponsive p-nitroazo-benzene pendant group,” Langmuir 9, 1086–1089 (1993).
[CrossRef]

M. Schönhoff, L. F. Chi, H. Fuchs, M. Lösche, “Structural rearrangements upon photoorientation of amphiphilic azobenzene dyes organized in ultrathin films on solid surfaces,” Langmuir 11, 163–167 (1995).
[CrossRef]

Liq. Cryst. (1)

U. Wiesner, N. Reynolds, C. Boeffel, H. W. Spiess, “An infrared spectroscopic study of photoinduced reorientation in dye containing liquid-crystalline polymers,” Liq. Cryst. 11, 251–254 (1992).
[CrossRef]

Mac-romol. Rapid Commun. (1)

H. Akiyama, K. Kudo, K. Ichimura, “Command surfaces. 10. Novel polymetacrylates with laterally attached azobenzene groups displaying photoinduced optical anisotropy,” Mac-romol. Rapid Commun. 16, 35–41 (1995).
[CrossRef]

Macromolecules (2)

A. Natanson, S. Xie, P. Rochon, “Azo polymers for reversible optical storage. 2. Poly74′-〈 〈2(Acryloyloxy)Ethyl8-Ethyl-amino8-2-Chloro-4-Nitroazobenzene,” Macromolecules 25, 5531–5532 (1992).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siester, P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1955).
[CrossRef]

Opt. Acta (1)

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (1)

Sh. Kakichashvili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 171–174 (1972).

Synth. Metal (1)

Z. Sekkat, M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Metal 54, 373–379 (1993).
[CrossRef]

Thin Solid Films (2)

G. Mobius, U. Pietsch, T. Geue, J. Stumpe, H. Ringsdorf, “Light induced modifications of Langmuir–Blodgett multilayer assemblies containing amphotropic azocopolymers,” Thin Solid Films 247, 235–239 (1994).
[CrossRef]

M. L. Barnik, S. P. Palto, V. A. Kharichev, N. M. Shtykov, S. G. Yudin, “Photoinduced orientational transformations in polar Langmuir-Blodgett films,” Thin Solid Films 179, 493–496 (1989).
[CrossRef]

Other (2)

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, “Photoinduced circular anisotropy in side-chain azobenzene polyesters,” Appl. Phys. Lett. (to be published).

T. Huang, K. H. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–386 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Arrangement for the holographic recording. E1 and E2 are the recording beams lying in a plane normal to the x–y plane (the plane of the grating) and subtending an angle 2θ. The horizontal axis x′ lies in the x–y plane at angle 45° to the coordinate axis x. (b) The periodic modulation of light polarization at holographic recording with two waves with orthogonal linear polarizations.

Fig. 2
Fig. 2

Theoretical dependence of the diffraction efficiency η on the polarization azimuth of the reconstructing wave for Δφ L = 0.02 and different values of Δφ C : 0 (curve 1), 0.02 (curve 2), and 0.005 (curve 3).

Fig. 3
Fig. 3

Experimental dependence of the diffraction efficiency η on the polarization azimuth a of a He–Ne reconstructing beam; the recording intensity is 60 mW/cm2 and λ = 488 nm: (curve 1) after 20 min of recording, (curve 2) 1 h after the recording, (curve 3) 24 h after the recording. The experimental values are marked with the signs. The solid curves are calculated following Eq. (16); the data for ηmax and η min were taken from Table 1.

Fig. 4
Fig. 4

Evolution of the diffraction efficiency η of the polarization grating during the recording at 488 nm and after the Ar+ laser is switched off (see the arrow), measured with a linearly polarized He–Ne beam: (curve 1) the efficiency for horizontal polarization (ηmax) and (curve 2) the efficiency for vertical polarization (ηmin). (a) Recording intensities of 60 mW/cm2 and (b) recording intensity 8 mW/cm2.

Fig. 5
Fig. 5

Evolution of the anisotropic phase differences Δφlin (curve 1) and Δφcir (curve 2) at 633 nm during the holographic recording at λ = 488 nm and after it for recording intensities (a) 60 mW/cm2 and (b) 8 mW/cm2, obtained from the curves in Fig. 4.

Tables (1)

Tables Icon

Table 1 Values of the Photoinduced Anisotropic Phase Difference Caused by Linear (Δ L ) and Circular (Δ C ) Birefringence

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

T ̂ = exp ( i K ̂ z ) ,
K ̂ = 2 π λ [ n 1 i Δ n cir i Δ n cir n 2 ] .
K ̂ = 2 π λ n ¯ + Δ K ̂ , Δ K ̂ = 2 π λ [ Δ n lin i Δ n cir i Δ n cir Δ n lin ] ,
Δ n lin = L ( a 2 b 2 ) = L S 1 2 + S 2 2 ,
Δ n cir = C ( I l I r ) = C S 3 ,
E = I [ cos ( δ / 2 ) i sin ( δ / 2 ) ] ,
Δ n lin = L S 1 2 + S 2 2 = L I cos δ ,
Δ n cir = C S 3 = C I sin δ .
Δ K ̂ = 2 π λ [ Δ n L cos δ i Δ n C sin δ i Δ n C sin δ Δ n L cos δ ] ,
T ̂ = [ cos N + i Δ φ L cos δ sin N N Δ φ C sin δ sin N N Δ φ C sin δ sin N N cos N i Δ φ L cos δ sin N N ] ,
Δ φ L = 2 π λ Δ n L z , Δ φ C = 2 π λ Δ n C z , N = ( Δ φ L cos δ ) 2 + ( Δ φ C cos δ ) 2 .
T ̂ = [ cos ( Δ φ C sin δ ) sin ( Δ φ C sin δ ) sin ( Δ φ C sin δ ) cos ( Δ φ C sin δ ) ] .
T ̂ = [ cos Δ φ + i sin Δ φ cos δ sin Δ φ sin δ sin Δ φ sin δ cos Δ φ i sin Δ φ cos δ ] .
I ± 1 = ½ I 0 sin 2 Δ φ ( 1 ± sin 2 α ) ,
T ̂ = [ 1 + i Δ φ L cos δ Δ φ C sin δ Δ φ C sin δ 1 i Δ φ C cos δ ] .
E ± 1 = I 0 [ Δ φ L 2 cos α Δ φ C 2 sin α Δ φ C 2 cos α Δ φ L 2 sin α ] .
I ± 1 = ¼ I 0 ( Δ φ L 2 + Δ φ C 2 2 Δ φ L Δ φ C sin 2 α ) ;

Metrics