Abstract

Optical bias has been applied in the formation of moving gratings in bismuth silicon oxide at large fringe modulations. It is shown that optical bias is an effective method of overcoming the problems associated with the sudden drop in the optimum fringe velocity when the fringe modulation is close to unity. It is experimentally found that within a certain range of optical bias the absolute diffraction efficiency can be higher than that without optical bias, which is not the case when a stationary grating is used.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals,” Opt. Commun. 38, 249–251 (1992).
    [CrossRef]
  2. H. Rajbenbach, J.-P. Huignard, Ph. Refregier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive BSO crystals,” Opt. Lett. 9, 558–560 (1984).
    [CrossRef] [PubMed]
  3. Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  4. Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
    [CrossRef] [PubMed]
  5. C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
    [CrossRef]
  6. C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
    [CrossRef]
  7. C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).
  8. L. B. Au, L. Solymar, “Space-charge field in photorefractive materials at large modulation,” Opt. Lett. 13, 660–6621988.
    [CrossRef] [PubMed]
  9. L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving fringes,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
    [CrossRef]
  10. G. A. Brost, “Numerical analysis of the photorefractive response with moving gratings,” presented at Photorefractive Materials, Effects and Devices PRM'93,Kiev, Ukraine, 11–15 August 1993.
  11. G. A. Brost, K. M. Magde, J. J. Larkin, M. T. Harris, “Modulation dependence of the photorefractive response with moving gratings—numerical analysis and experiment,” J. Opt. Soc. Am. B 11, 1764–1772 (1994).
    [CrossRef]
  12. T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
    [CrossRef]
  13. T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
    [CrossRef]

1995 (1)

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

1994 (2)

1993 (1)

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

1992 (2)

J.-P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals,” Opt. Commun. 38, 249–251 (1992).
[CrossRef]

C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
[CrossRef]

1991 (1)

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

1990 (1)

1988 (1)

1985 (2)

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

1984 (1)

Au, L. B.

Brost, G. A.

G. A. Brost, K. M. Magde, J. J. Larkin, M. T. Harris, “Modulation dependence of the photorefractive response with moving gratings—numerical analysis and experiment,” J. Opt. Soc. Am. B 11, 1764–1772 (1994).
[CrossRef]

G. A. Brost, “Numerical analysis of the photorefractive response with moving gratings,” presented at Photorefractive Materials, Effects and Devices PRM'93,Kiev, Ukraine, 11–15 August 1993.

Cartwright, C. M.

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
[CrossRef]

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Conners, L. M.

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Foote, P. D.

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Gillespie, W. A.

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
[CrossRef]

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Hall, T. J.

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Harris, M. T.

Huignard, J.-P

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Huignard, J.-P.

J.-P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals,” Opt. Commun. 38, 249–251 (1992).
[CrossRef]

H. Rajbenbach, J.-P. Huignard, Ph. Refregier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive BSO crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Jaura, R.

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Larkin, J. J.

Magde, K. M.

Mann, M.

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Marrakchi, A.

J.-P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals,” Opt. Commun. 38, 249–251 (1992).
[CrossRef]

McClelland, T. E.

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Rajbenbach, H.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J.-P. Huignard, Ph. Refregier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive BSO crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Refregier, Ph.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, J.-P. Huignard, Ph. Refregier, “Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive BSO crystals,” Opt. Lett. 9, 558–560 (1984).
[CrossRef] [PubMed]

Ringhofer, K. H.

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Solymar, L.

Soutar, C.

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
[CrossRef]

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Sturman, B. I.

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Wang, Z. Q.

Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “Holographic-recording improvement in a bismuth silicon oxide crystal by the moving-grating technique,” Appl. Opt. 33, 7627–7633 (1994).
[CrossRef] [PubMed]

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

Webb, D. J.

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P Huignard, “Two-beam coupling in photorefractive BSO crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

C. Soutar, W. A. Gillespie, C. M. Cartwright, “The effect of optical bias on grating formation dynamics in photorefractive BSO,” Opt. Commun. 90, 329–334 (1992).
[CrossRef]

C. Soutar, W. A. Gillespie, C. M. Cartwright, Z. Q. Wang, “Tracking novelty filter using transient enhancement of gratings in photorefractive BSO,” Opt. Commun. 86, 255–259 (1991).
[CrossRef]

J.-P. Huignard, A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive BSO crystals,” Opt. Commun. 38, 249–251 (1992).
[CrossRef]

T. E. McClelland, D. J. Webb, B. I. Sturman, M. Mann, K. H. Ringhofer, “Low frequency peculiarities of the photorefractive response in sillenites,” Opt. Commun. 113, 371–377 (1995).
[CrossRef]

Opt. Lett. (2)

Optik (1)

C. Soutar, Z. Q. Wang, W. A. Gillespie, C. M. Cartwright, “A novelty-filtered optical intensity correlator using photore-fractive BSO,” Optik 94, 16–22 (1993).

Prog. Quantum Electron. (1)

T. J. Hall, R. Jaura, L. M. Conners, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Other (1)

G. A. Brost, “Numerical analysis of the photorefractive response with moving gratings,” presented at Photorefractive Materials, Effects and Devices PRM'93,Kiev, Ukraine, 11–15 August 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental results of the optimum fringe velocity versus the fringe modulation in cases with and without optical bias. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2 W.L., white light.

Fig. 2
Fig. 2

Experimental results of the enhancement of the diffraction efficiency at optimum fringe velocity versus the writing beam ratio. E 0 = 6.25 kV/cm and I 0 = 5 mW/cm2.

Fig. 3
Fig. 3

Experimental system used for investigating the effects of optical bias on moving gratings. λ/2, half-wave plates; PBS, polarization beam splitter; Va, voltage applied in the [110] direction; D1, D2, detectors; W.L., white-light source. The BSO crystal dimensions are 10 × 9 × 2 mm; the Ar+ beams enter the (110) plane of the crystal.

Fig. 4
Fig. 4

Experimental results of the optimum fringe velocity versus the white-light intensity for large fringe modulations. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2.

Fig. 5
Fig. 5

Experimental results of the diffraction efficiency versus the white-light intensity in cases with and without moving gratings. E 0 = 6.25 kV/cm, Λ = 20 μm, M = 0.7, and I 0 = 25 mW/cm2.

Fig. 6
Fig. 6

Experimental results of the diffraction efficiency versus the white-light intensity in the case of a moving grating for different fringe modulations. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2.

Fig. 7
Fig. 7

Experimental results of the optimum fringe velocity versus the white-light intensity for different fringe modulations. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2.

Fig. 8
Fig. 8

Experimental results of the enhancement of the diffraction efficiency versus the white-light intensity for different fringe modulations. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2.

Fig. 9
Fig. 9

Experimental results of the diffraction efficiency versus fringe modulations in the cases of a stationary grating, a moving grating, and a moving grating with optical bias. E 0 = 6.25 kV/cm, Λ = 20 μm, and I 0 = 25 mW/cm2.

Metrics