Abstract

An electronically or optically addressed compact optical bypass–exchange switch is investigated and experimentally demonstrated. The switch is polarization based and consists of a controllable λ/2 plate sandwiched between two polarizing beam displacers. The input and the output signals propagate normal to the switching array, which makes the switch extremely attractive for cascading switching arrays, as found in multistage interconnect networks. A complete, all-optical interconnection network is suggested.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  3. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, “Channel optical waveguides and directional couplers in GaAs-imbedded and ridged,” Appl. Opt. 13, 327–330 (1974).
    [CrossRef] [PubMed]
  4. A. W. Lohmann, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
    [CrossRef] [PubMed]
  5. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design considerations for holographic optical interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [CrossRef] [PubMed]
  6. C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–331 (1981).
    [CrossRef]
  7. H. M. Ozaktas, D. Mendlovic, “Multistage optical implementation architecture with least possible growth of system size,” Opt. Lett. 18, 296–298 (1993).
    [CrossRef] [PubMed]
  8. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
    [CrossRef]
  9. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  10. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  11. E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theoret. Phys. 21, 219–223 (1982).
    [CrossRef]
  12. BeamScan, model 1180 GP, by Photon, Inc. The sampling aperture is 25 μm.
  13. Crystal Image video projector by Epson. The LCTV panel has 320 × 220 pixels of pitch 80 μm.
  14. T.-Y. Feng, S.-W. Seo, “A new routing algorithm for a class of rearrangeable networks,” IEEE Trans. Comput. 43, 1270–1280 (1994).
    [CrossRef]
  15. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt., 33, 3670–3682 (1994).
    [CrossRef] [PubMed]
  16. K.-H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  17. K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
    [CrossRef]
  18. Fabia Engineering Ltd., Multipurpose Building 3, Kiryat Weizmann Science Park, Ness Ziona 70400, Israel. Fax: 972-8-408085.

1995 (1)

1994 (2)

T.-Y. Feng, S.-W. Seo, “A new routing algorithm for a class of rearrangeable networks,” IEEE Trans. Comput. 43, 1270–1280 (1994).
[CrossRef]

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt., 33, 3670–3682 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (1)

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

1988 (2)

1987 (1)

1986 (2)

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1982 (1)

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theoret. Phys. 21, 219–223 (1982).
[CrossRef]

1981 (1)

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–331 (1981).
[CrossRef]

1974 (1)

1971 (1)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Brenner, K.-H.

Fainman, Y.

Feng, T.-Y.

T.-Y. Feng, S.-W. Seo, “A new routing algorithm for a class of rearrangeable networks,” IEEE Trans. Comput. 43, 1270–1280 (1994).
[CrossRef]

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–331 (1981).
[CrossRef]

Ford, J. E.

Fredkin, E.

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theoret. Phys. 21, 219–223 (1982).
[CrossRef]

Garmire, E.

Garvin, H. L.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design considerations for holographic optical interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Hesselink, L.

Hogari, K.

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Huang, A.

Hunsperger, R. G.

Johnson, K. M.

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lee, S. H.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lohmann, A. W.

Marchand, P.

Matsumoto, T.

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Mendlovic, D.

Noguchi, K.

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Ozaktas, H. M.

Sakano, T.

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

Seo, S.-W.

T.-Y. Feng, S.-W. Seo, “A new routing algorithm for a class of rearrangeable networks,” IEEE Trans. Comput. 43, 1270–1280 (1994).
[CrossRef]

Shamir, J.

Somekh, S.

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Stork, W.

Stucke, G.

Surette, M. R.

Toffoli, T.

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theoret. Phys. 21, 219–223 (1982).
[CrossRef]

Urquhart, K. S.

Wu, C.-L.

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–331 (1981).
[CrossRef]

Xu, F.

Yariv, A.

Appl. Opt. (8)

Electron. Lett. (1)

K. Noguchi, K. Hogari, T. Sakano, T. Matsumoto, “Rearrangeable multichannel free-space optical switch using polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990).
[CrossRef]

IEEE Trans. Comput. (3)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

T.-Y. Feng, S.-W. Seo, “A new routing algorithm for a class of rearrangeable networks,” IEEE Trans. Comput. 43, 1270–1280 (1994).
[CrossRef]

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–331 (1981).
[CrossRef]

Int. J. Theoret. Phys. (1)

E. Fredkin, T. Toffoli, “Conservative logic,” Int. J. Theoret. Phys. 21, 219–223 (1982).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnection for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other (3)

Fabia Engineering Ltd., Multipurpose Building 3, Kiryat Weizmann Science Park, Ness Ziona 70400, Israel. Fax: 972-8-408085.

BeamScan, model 1180 GP, by Photon, Inc. The sampling aperture is 25 μm.

Crystal Image video projector by Epson. The LCTV panel has 320 × 220 pixels of pitch 80 μm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of a bypass–exchange switch in the two operating modes.

Fig. 2
Fig. 2

Double refraction of light in a calcite crystal.

Fig. 3
Fig. 3

Optical setup of a bypass–exchange switch. Input and output signals are parallel and in a consistent polarization state, making cascadability feasible.

Fig. 4
Fig. 4

Measurement method of output obtained by a line-spread function of the two circular signals.

Fig. 5
Fig. 5

Output signals in (a) bypass and (b) exchange modes. The peaks are similar, but an observant viewer will note that the two peaks are in exchanged positions.

Fig. 6
Fig. 6

Output signals in (a) bypass and (b) exchange modes when only one input signal is present. No cross talk is visible.

Fig. 7
Fig. 7

Output of a single signal as a function of the driving voltage at 10 Hz. Driving voltage is on top; the photodetector reading is on the bottom. As the switching rate increases, delay time becomes noticeable.

Fig. 8
Fig. 8

Plot of the SNR versus the number of stages.

Fig. 9
Fig. 9

Proposed setup for an all-optical multistage interconnect network. BDP's, beam-displacing prisms.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = sin 2 ( 4 θ ) sin 2 [ π Δ n ( λ ) d / λ ] .
= 1 ( 1 att ) ( 1 c ) 5 % .
S ( w ) = ( 1 ) w ,
N ( w ) = w c .
SNR = S ( w ) N ( w ) = ( 1 ) w w c .

Metrics