Abstract

A twisted nematic liquid-crystal television (LCTV) has been used together with Twyman–Green type interferometers to measure and compensate the phase distortion of a wave front. The twisted nematic LCTV has been operated as a phase-only modulator, and its phase retardation ability has been doubled in these experiments. The phase function of a phase object has been measured in different arrangements of the experimental setup.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dou, M. K. Giles, “Closed loop adaptive optics system using a LCTV as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
    [CrossRef] [PubMed]
  2. B. E. A. Saleh, M. C. Teich, in Fundamentals of Photonics, (Wiley, New York, 1991), Chap.18, pp. 721–727.
  3. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
    [CrossRef]
  4. J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
    [CrossRef]
  5. C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
    [CrossRef]
  6. G. Paul-Hus, Y. Sheng, “Optical phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
    [CrossRef]

1995 (1)

1994 (1)

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

1993 (1)

G. Paul-Hus, Y. Sheng, “Optical phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

1992 (1)

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

1974 (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Dou, R.

Giles, M. K.

Gregory, D. A.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Jones, B. K.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Kirsch, J. C.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Knopp, J.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Monroe, S. E.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Paul-Hus, G.

G. Paul-Hus, Y. Sheng, “Optical phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, in Fundamentals of Photonics, (Wiley, New York, 1991), Chap.18, pp. 721–727.

Sheng, Y.

G. Paul-Hus, Y. Sheng, “Optical phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

Soutar, C.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, in Fundamentals of Photonics, (Wiley, New York, 1991), Chap.18, pp. 721–727.

Thie, M. W.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[CrossRef]

Opt. Eng. (3)

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

G. Paul-Hus, Y. Sheng, “Optical phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

Opt. Lett. (1)

Other (1)

B. E. A. Saleh, M. C. Teich, in Fundamentals of Photonics, (Wiley, New York, 1991), Chap.18, pp. 721–727.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of a Twyman–Green interferometer for measuring the phase function of a phase object.

Fig. 2
Fig. 2

Calibration measurement of the experimental system: (a) interference fringes of the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 3
Fig. 3

Phase function measurement of the phase object: (a) interference fringes after inserting the phase object in the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 4
Fig. 4

Three-dimensional plot of the phase function of the phase object using a 30 × 30 grid to represent the 1-cm2 aperture.

Fig. 5
Fig. 5

Diagram of a modified Twyman–Green interferometer for measuring the phase function of a phase object in a single pass.

Fig. 6
Fig. 6

Calibration measurement of the experimental system: (a) interference fringes of the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 7
Fig. 7

Phase function measurement of the phase object: (a) interference fringes after inserting the phase object in the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 8
Fig. 8

Three-dimensional plot of the phase function of the phase object using a 30 × 30 grid to represent the 1-cm2 aperture.

Fig. 9
Fig. 9

Calibration measurement of the experimental system: (a) interference fringes of the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 10
Fig. 10

Phase function measurement of the phase object: (a) interference fringes after inserting the phase object in the optical system; (b) interference pattern after correction by driving the LCTV; (c) the driven pattern on the LCTV; (d) three-dimensional plot of the phase conjugate.

Fig. 11
Fig. 11

Three-dimensional plot of the phase function of the phase object using a 30 × 30 grid to represent the 1-cm2 aperture.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | u 1 ( x , y ) + u 2 ( x , y ) | 2 = { A 1 exp [ j Φ 1 ( x , y ) ] + A 2 exp [ j Φ 2 ( x , y ) ] } × { A 1 exp [ j Φ 1 ( x , y ) ] + A 2 exp [ j Φ 2 ( x , y ) ] } = C 1 + C 2 cos [ Φ 1 ( x , y ) Φ 2 ( x , y ) ] ,
I ( x , y ) = | A 1 exp { j [ Φ 1 ( x , y ) + Φ L ( x , y ) ] } + A 2 exp [ j Φ 2 ( x , y ) ] | 2 = C 1 + C 2 cos [ Φ L ( x , y ) + Φ 1 ( x , y ) Φ 2 ( x , y ) ] ,
I ( x , y ) = | A 1 exp { j [ Φ 1 ( x , y ) + Φ L C ( x , y ) + 2 Φ o ( x , y ) ] } + A 2 exp [ j Φ 2 ( x , y ) ] | 2 = C 1 + C 2 cos [ Φ L C ( x , y ) + 2 Φ o ( x , y ) + Φ 1 ( x , y ) Φ 2 ( x , y ) ] ,
Φ o ( x , y ) = / [ Φ 2 ( x , y ) Φ 1 ( x , y ) Φ L C ( x , y ) ] = 1 / 2 [ Φ L ( x , y ) Φ L C ( x , y ) ] .
I ( x , y ) = | A 1 exp { j [ Φ 1 ( x , y ) + Φ L C ( x , y ) ] } + A 2 exp { j [ Φ 2 ( x , y ) + Φ o ( x , y ) ] } | 2 = C 1 + C 2 cos [ Φ L C ( x , y ) + Φ 1 ( x , y ) Φ o ( x , y ) Φ 2 ( x , y ) ] ,
Φ o ( x , y ) = Φ L C ( x , y ) + Φ 1 ( x , y ) Φ 2 ( x , y ) = Φ L C ( x , y ) Φ L ( x , y ) .

Metrics