Abstract

A time-gated technique to enhance viewing through highly scattering media such as tissue is discussed. Experiments have been performed on tissuelike plastic phantoms to determine the possibilities and limitations of the technique. The effects of the time-gate width and the localization, size, and optical properties of hidden objects have been studied. A computer model to simulate light propagation in tissue is also presented. The predictions of the model are compared with experimental results.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Institute Series Vol. SI11 (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1993).
  2. R. J. Bartrum, H. C. Crow, “Transillumination lightscanning to diagnose breast cancer: a feasibility study,” Am. J. Radiol. 142, 409–414 (1984).
  3. M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
    [Crossref] [PubMed]
  4. B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.
  5. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [Crossref] [PubMed]
  6. B. Chance, A. Katzir, eds., Time-Resolved Spectroscopy and Imaging of Tissue, SPIE1431, 1–332 (1991).
  7. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
    [Crossref] [PubMed]
  8. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [Crossref] [PubMed]
  9. M. Toida, T. Ichimura, H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications,” Inst. Electron. Inf. Commun. Jpn. Trans. E74, 1692–1694 (1991).
  10. K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [Crossref] [PubMed]
  11. L. M. Wang, P. P. Ho, R. R. Alfano, “Double-stage picosecond Kerr gate for ballistic time-gated optical imaging in turbid media,” Appl. Opt. 32, 535–540 (1993).
    [Crossref] [PubMed]
  12. M. D. Duncan, R. Mahon, L. L. Tankersley, R. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [Crossref] [PubMed]
  13. G. W. Faris, M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19, 1813–1815 (1994).
    [Crossref] [PubMed]
  14. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
    [Crossref] [PubMed]
  15. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
    [Crossref] [PubMed]
  16. R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
    [Crossref] [PubMed]
  17. J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
    [Crossref]
  18. A. Knüttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
    [Crossref] [PubMed]
  19. S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
    [Crossref] [PubMed]
  20. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
    [Crossref] [PubMed]
  21. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref] [PubMed]
  22. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
    [Crossref]
  23. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
    [Crossref]
  24. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  25. S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissue,” Appl. Opt. 28, 2223–2229 (1989).
    [Crossref] [PubMed]
  26. M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).
  27. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [Crossref] [PubMed]
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).
  29. C. Lindquist, “Numerical diffusion modelling of light propagation in turbid media for medical diagnostics,” Lund Rep. At. Phys.LRAP-157, 1–47 (1994).
  30. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [Crossref] [PubMed]
  31. M. J. Homer, “Breast imaging: pitfalls, controversies and some practical thoughts,” Radiol. Clin. North Am. 23, 459–472 (1985).
    [PubMed]
  32. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [Crossref] [PubMed]
  33. J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.
  34. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [Crossref] [PubMed]

1994 (3)

1993 (6)

1992 (1)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[Crossref]

1991 (7)

1990 (2)

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[Crossref] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

1989 (3)

1988 (2)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

1985 (1)

M. J. Homer, “Breast imaging: pitfalls, controversies and some practical thoughts,” Radiol. Clin. North Am. 23, 459–472 (1985).
[PubMed]

1984 (1)

R. J. Bartrum, H. C. Crow, “Transillumination lightscanning to diagnose breast cancer: a feasibility study,” Am. J. Radiol. 142, 409–414 (1984).

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Alfano, R. R.

L. M. Wang, P. P. Ho, R. R. Alfano, “Double-stage picosecond Kerr gate for ballistic time-gated optical imaging in turbid media,” Appl. Opt. 32, 535–540 (1993).
[Crossref] [PubMed]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[Crossref] [PubMed]

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.

Anderson, E. R.

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[Crossref] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[Crossref]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
[Crossref]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Banks, M.

Bartrum, R. J.

R. J. Bartrum, H. C. Crow, “Transillumination lightscanning to diagnose breast cancer: a feasibility study,” Am. J. Radiol. 142, 409–414 (1984).

Beek, J. F.

Berg, R.

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[Crossref] [PubMed]

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[Crossref] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[Crossref]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
[Crossref]

Berndt, K. W.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Chance, B.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Chase, C. L.

M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
[Crossref] [PubMed]

Chen, H.

Chen, Y.

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Crow, H. C.

R. J. Bartrum, H. C. Crow, “Transillumination lightscanning to diagnose breast cancer: a feasibility study,” Am. J. Radiol. 142, 409–414 (1984).

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Dilworth, D.

Dolne, J. J.

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.

Duncan, M. D.

Faris, G. W.

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Fishkin, J.

J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
[Crossref]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).

Flock, S. T.

B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Gratton, E.

J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
[Crossref]

Greenfeld, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Haskell, R. C.

Hebden, J. C.

Ho, P. P.

Homer, M. J.

M. J. Homer, “Breast imaging: pitfalls, controversies and some practical thoughts,” Radiol. Clin. North Am. 23, 459–472 (1985).
[PubMed]

Ichimura, T.

M. Toida, T. Ichimura, H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications,” Inst. Electron. Inf. Commun. Jpn. Trans. E74, 1692–1694 (1991).

Inaba, H.

M. Toida, T. Ichimura, H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications,” Inst. Electron. Inf. Commun. Jpn. Trans. E74, 1692–1694 (1991).

Jacques, S. L.

Jarlman, O.

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[Crossref] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
[Crossref]

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Knutson, J. R.

Knüttel, A.

Kölzer, J.

Lakowicz, J. R.

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Leith, E.

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Lindquist, C.

C. Lindquist, “Numerical diffusion modelling of light propagation in turbid media for medical diagnostics,” Lund Rep. At. Phys.LRAP-157, 1–47 (1994).

Liu, F.

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.

Lopez, J.

Madsen, S. J.

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
[Crossref] [PubMed]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).

Mahon, R.

Mantulin, W. W.

J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
[Crossref]

Massey, R. B.

M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
[Crossref] [PubMed]

Mitic, G.

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Morrell, D.

M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
[Crossref] [PubMed]

Moulton, J. D.

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

Nioka, S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Otto, J.

Patterson, M. S.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.

Persson, A.

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Pickering, J. W.

Plies, E.

Prahl, S. A.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).

Reintjes, R.

Schmitt, J. M.

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Sölkner, G.

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

Svanberg, S.

S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993).
[Crossref] [PubMed]

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[Crossref] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[Crossref]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[Crossref] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
[Crossref]

Swift, M.

M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
[Crossref] [PubMed]

Tankersley, L. L.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).

Toida, M.

M. Toida, T. Ichimura, H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications,” Inst. Electron. Inf. Commun. Jpn. Trans. E74, 1692–1694 (1991).

Tromberg, B. J.

Valdmanis, J.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

van Gemert, M. J. C.

van Wieringen, N.

vandeVen, M. J.

J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
[Crossref]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).

Wang, L. M.

Wilson, B. C.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.

Wong, K. S.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.

Xing, Q.

Yoo, K. M.

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[Crossref] [PubMed]

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Zhu, X.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Zinth, W.

Am. J. Radiol. (1)

R. J. Bartrum, H. C. Crow, “Transillumination lightscanning to diagnose breast cancer: a feasibility study,” Am. J. Radiol. 142, 409–414 (1984).

Appl. Opt. (9)

L. M. Wang, P. P. Ho, R. R. Alfano, “Double-stage picosecond Kerr gate for ballistic time-gated optical imaging in turbid media,” Appl. Opt. 32, 535–540 (1993).
[Crossref] [PubMed]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[Crossref] [PubMed]

R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[Crossref] [PubMed]

A. Knüttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

S. L. Jacques, “Time resolved propagation of ultrashort laser pulses within turbid tissue,” Appl. Opt. 28, 2223–2229 (1989).
[Crossref] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[Crossref] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[Crossref] [PubMed]

Inst. Electron. Inf. Commun. Jpn. Trans. (1)

M. Toida, T. Ichimura, H. Inaba, “The first demonstration of laser computed tomography achieved by coherent detection imaging method for biomedical applications,” Inst. Electron. Inf. Commun. Jpn. Trans. E74, 1692–1694 (1991).

J. Photochem. Photobiol. (1)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissue-like media,” J. Photochem. Photobiol. 16, 155–167 (1992).
[Crossref]

MTT-S Digest (1)

M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” MTT-S Digest905–908 (1991).

N. Engl. J. Med. (1)

M. Swift, D. Morrell, R. B. Massey, C. L. Chase, “Incidence of cancer in 161 families affected by ataxia-telangiectasia,” N. Engl. J. Med. 325, 1831–1836 (1991).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Med. Biol. (2)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurement of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Radiol. Clin. North Am. (1)

M. J. Homer, “Breast imaging: pitfalls, controversies and some practical thoughts,” Radiol. Clin. North Am. 23, 459–472 (1985).
[PubMed]

Other (8)

J. J. Dolne, K. M. Yoo, F. Liu, R. R. Alfano, “Spatial frequency imaging through random scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 284–287.

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 110–119 (1991).
[Crossref]

G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Institute Series Vol. SI11 (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1993).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1990).

C. Lindquist, “Numerical diffusion modelling of light propagation in turbid media for medical diagnostics,” Lund Rep. At. Phys.LRAP-157, 1–47 (1994).

J. Fishkin, E. Gratton, M. J. vandeVen, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, A. Katzir, eds., SPIE1431, 122–135 (1991).
[Crossref]

B. Chance, A. Katzir, eds., Time-Resolved Spectroscopy and Imaging of Tissue, SPIE1431, 1–332 (1991).

B. C. Wilson, M. S. Patterson, S. T. Flock, D. R. Wyman, “Tissue optical properties in relation to light propagation models and in vivo dosimetry,” in Photon Migration in Tissue, B. Chance, ed. (Plenum, New York, 1989), pp. 24–42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of experimental setup used in the time-gated viewing experiments. Const. Fract. Discr., constant fraction discriminator; Ref., reference; Amp., amplifier.

Fig. 2
Fig. 2

Temporal-dispersion data: The filled squares form a typical experimental time-dispersion curve, obtained when 30 mm of Delrin plastic were transilluminated. The solid curve is a fit to the analytical solution of the diffusion equation, giving the optical properties of the plastic (μ s = 2.3 mm−1 and μ a = 0.002 mm−1).

Fig. 3
Fig. 3

Diagram of the geometry used during transillumination of the tissue phantoms (lower image). The curve (upper plot) shows the relative amount of light detected in the time-gate window used. The letters A, B, and C represent the detected relative light intensity within the time gate and the change of the light intensity that is due to the hidden object when the phantom is scanned.

Fig. 4
Fig. 4

Plots of the influence of the time-gate width when a 30-mm-thick tissue phantom (μ s = 2.3 mm−1 and μ a = 0.002 mm−1) containing a 5-mm hole in the middle is transilluminated: (a) The relative (Rel.) amount of light A detected as a function of the width of the gate window. (b) The contrast (B/A) in the detection of the hidden object. (c) The FWHM C in the detection of the hidden object. (d) The residual between the experimental curve and the Gaussian fit. The 230-ps gate used during evaluation of the experimental curves is also indicated in (a) and (d).

Fig. 5
Fig. 5

Experimental curves obtained from the transillumination of a 30-mm-thick tissue phantom (μ s = 2.3 mm−1 and μ a = 0.002 mm−1) containing holes of varying sizes located in the middle of the phantom. The diagram shows the relative contrast B/A (solid curve) and the FWHM C (dashed curve) as functions of the hole size.

Fig. 6
Fig. 6

Experimental curves obtained by transillumination of a 30-mm-thick tissue phantom (μ s = 2.3 mm−1, μ a = 0.002 mm−1) containing a 4-mm hole at different distances from the surface at which the light enters the phantom. The diagram shows the relative contrast B/A (triangles) and the FWHM C (squares) as functions of the hole position.

Fig. 7
Fig. 7

Comparison between the experimental results and the numerical computer model of the transillumination of a 30-mm-thick tissue phantom containing a 5-mm hole filled with a liquid that has a lower scattering coefficient and a higher absorption coefficient than the phantom: (a) the first light detected in a 230-ps time gate, and (b) the total light intensity obtained as a function of the scan position.

Fig. 8
Fig. 8

Relative contrast B/A, i.e., the amount of light in a 230-ps time-gate window for a measurement over the hole, B, divided by the amount of light detected in the same time window for a measurement 15 mm beside the hole, A, as a function of the effective scattering coefficient μ s of the liquid in the hole: (a) The symbols represent the experimental data, and the curves represent the numerical-model data for different values of the absorption coefficient μ a of the liquid in the hole. (b) The experimental ratio in the total light intensity for the two measuring sites.

Fig. 9
Fig. 9

Surface plot representing the same on–off contrast that was described for Fig. 8(a). The axes at the bottom represent the different absorption and scattering coefficients of the hidden, cross-approximated cylinder. The optical properties of the bulk material were μ s = 1.1 mm−1 and μ a = 0.05 mm−1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n c ϕ ( r , t ) t [ D ϕ ( r , t ) ] + μ a ϕ ( r , t ) = S ( r , t ) ,
ϕ xyz t + 1 / 3 ϕ xyz t = c Δ t 3 n Δ 2 [ D x + 1 / 2 y z ( ϕ x + 1 y z t + 1 / 3 ϕ xyz t + 1 / 3 ) D x 1 / 2 y z ( ϕ xyz t + 1 / 3 ϕ x 1 y z t + 1 / 3 ) + D x y + 1 / 2 z ( ϕ x y + 1 z t ϕ xyz t ) D x y 1 / 2 z ( ϕ xyz t ϕ x y 1 z t ) + D xyz + 1 / 2 ( ϕ xyz + 1 t ϕ xyz t ) D xyz 1 / 2 ( ϕ xyz t ϕ xyz 1 t ) ] c Δ t 6 n μ a ( ϕ xyz t + ϕ xyz t + 1 / 3 ) ,
ϕ ( r , t ) d S = Δ ϕ ( r , t ) d V .

Metrics