Abstract

The dynamics of the optical behavior of tissue during the photothermal interaction of laser radiation with tissue could significantly affect the optimization of light doses for effective and safe applications of lasers in medicine. Characterization of the dynamics of tissue optics during laser heating was performed by means of simultaneous measurements of the total transmittance, diffuse reflectance, and surface temperature of fresh and thermally coagulated human skin and canine aorta during long-pulsed Nd:YAG laser heating with a double integrating-sphere system and an infrared camera. Thermally induced changes in the optical properties of tissue caused a decrease in the total transmittance and an increase in the diffuse reflectance of both fresh and precoagulated skin and aorta samples. For fresh tissue, these changes were primarily reversible until photocoagulation occurred, then both the reversible, as well as the irreversible, changes were observed. However, for precoagulated tissue the reversible changes in the optical properties were dominant, whereas the irreversible changes were insignificant. Results from this study indicate the existence of the nonlinear behavior in the optics of turbid biological media during pulsed laser heating. Possible mechanisms responsible for this nonlinear optical behavior are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. J. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).
  2. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  4. A. J. Welch, M. J. C. van Gemert, Optical–Thermal Response of Laser Irradiated Tissue, 1st ed. (Plenum, New York, 1995), Chaps. 2–7.
  5. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
    [CrossRef] [PubMed]
  6. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [CrossRef] [PubMed]
  7. L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid media,” Appl. Opt. 34, 2362–2366 (1995).
    [CrossRef] [PubMed]
  8. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  9. J. W. Pickering, “Optical property changes as a result of protein denaturation in albumen and yolk,” J. Photochem. Photobiol. B 16 (2), 101–111 (1992).
    [CrossRef] [PubMed]
  10. G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
    [CrossRef] [PubMed]
  11. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
    [CrossRef] [PubMed]
  12. I. F. Çilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).
    [CrossRef] [PubMed]
  13. F. Chambettaz, F. Marquis Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE J. Biomed. Eng. 40, 105–107 (1993).
    [CrossRef]
  14. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Change in the optical properties 1at 632.8 nm2 of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
    [CrossRef] [PubMed]
  15. N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9, 375–381 (1989).
    [CrossRef] [PubMed]
  16. J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
    [CrossRef] [PubMed]
  17. J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
    [CrossRef] [PubMed]
  18. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
    [CrossRef] [PubMed]
  19. J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
    [CrossRef] [PubMed]
  20. M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
    [CrossRef] [PubMed]
  21. M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
    [CrossRef]
  22. W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior in ocular media during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
    [CrossRef] [PubMed]
  23. J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).
  24. F. A. Duck, Physical Properties of Tissues, 1st ed. (Academic, San Diego, Calif., 1990), Chap. 3.
  25. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
    [CrossRef] [PubMed]

1995 (2)

1994 (3)

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

1993 (6)

1992 (1)

J. W. Pickering, “Optical property changes as a result of protein denaturation in albumen and yolk,” J. Photochem. Photobiol. B 16 (2), 101–111 (1992).
[CrossRef] [PubMed]

1991 (1)

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

1990 (2)

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef] [PubMed]

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

1989 (5)

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef] [PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9, 375–381 (1989).
[CrossRef] [PubMed]

1988 (2)

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

1987 (1)

M. C. J. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).

Beek, J. F.

Blokland, P.

Bogen, D. K.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef] [PubMed]

Borst, C.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Bosman, S.

Chambettaz, F.

F. Chambettaz, F. Marquis Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE J. Biomed. Eng. 40, 105–107 (1993).
[CrossRef]

Cheong, W.-F.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Chuang, C. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Çilesiz, I. F.

Cummings, J. P.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

Derbyshire, G. J.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef] [PubMed]

Domankevitz, Y.

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9, 375–381 (1989).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissues, 1st ed. (Academic, San Diego, Calif., 1990), Chap. 3.

Echevarria, M.

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Fischbarg, J.

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Ghaffari, S. A.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Iserovich, P.

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Jacques, S. L.

L. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid media,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
[CrossRef] [PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

James, L. M.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Jansen, E. D.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Jenkins, R. D.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

Kuang, K.

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Leonard, B. M.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Li, J.

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Lin, W.-C.

Littmann, L.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Marquis Weible, F.

F. Chambettaz, F. Marquis Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE J. Biomed. Eng. 40, 105–107 (1993).
[CrossRef]

Motamedi, M.

W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior in ocular media during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
[CrossRef] [PubMed]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Nishioka, N. S.

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9, 375–381 (1989).
[CrossRef] [PubMed]

Patterson, M. S.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Pickering, J. W.

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Change in the optical properties 1at 632.8 nm2 of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

J. W. Pickering, “Optical property changes as a result of protein denaturation in albumen and yolk,” J. Photochem. Photobiol. B 16 (2), 101–111 (1992).
[CrossRef] [PubMed]

Posthumus, P.

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Change in the optical properties 1at 632.8 nm2 of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

Prahl, S. A.

Salathé, R. P.

F. Chambettaz, F. Marquis Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE J. Biomed. Eng. 40, 105–107 (1993).
[CrossRef]

Schmitt, J. M.

Sinclair, I. N.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Sinofsky, E. L.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Spears, J. R.

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

Splinter, R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
[CrossRef] [PubMed]

M. C. J. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).

Sterenborg, H. J. C. M.

Svenson, R. H.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Tan, O. T.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Tatsis, G. P.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Thompson, M.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Tuntelder, J. R.

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Unger, M.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef] [PubMed]

van Gemert, M. C. J.

M. C. J. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).

van Gemert, M. J. C.

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Change in the optical properties 1at 632.8 nm2 of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef] [PubMed]

A. J. Welch, M. J. C. van Gemert, Optical–Thermal Response of Laser Irradiated Tissue, 1st ed. (Plenum, New York, 1995), Chaps. 2–7.

van Leeuwen, T. G.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

van Wieringen, N.

Walker, E. C.

Wall, R. T.

Walsh, J. T.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

Wang, L.

Welch, A. J.

W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior in ocular media during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
[CrossRef] [PubMed]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

I. F. Çilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef] [PubMed]

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

A. J. Welch, M. J. C. van Gemert, Optical–Thermal Response of Laser Irradiated Tissue, 1st ed. (Plenum, New York, 1995), Chaps. 2–7.

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Zhou, G. X.

Am. J. Physiol.— Cell Physiol. (1)

J. Fischbarg, J. Li, K. Kuang, M. Echevarria, P. Iserovich, “Determination of volume and water permeability of plated cells from measurements of light scattering,” Am. J. Physiol.— Cell Physiol. 34, C1412–C1423 (1993).

Appl. Opt. (6)

IEEE J. Biomed. Eng. (1)

F. Chambettaz, F. Marquis Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE J. Biomed. Eng. 40, 105–107 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1153 (1989).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissue–II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (1)

J. W. Pickering, “Optical property changes as a result of protein denaturation in albumen and yolk,” J. Photochem. Photobiol. B 16 (2), 101–111 (1992).
[CrossRef] [PubMed]

Lasers Life Sci. (1)

M. C. J. van Gemert, W. M. Star, “Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).

Lasers Surg. Med. (2)

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite diameter laser beams,” Lasers Surg. Med. 9, 148–154 (1989).
[CrossRef] [PubMed]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–268 (1994).
[CrossRef] [PubMed]

Lasers Surg. Med. (7)

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1994).
[CrossRef] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Lasers Surg. Med. 9, 405–421 (1989).
[CrossRef] [PubMed]

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9, 375–381 (1989).
[CrossRef] [PubMed]

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

J. R. Spears, L. M. James, B. M. Leonard, I. N. Sinclair, R. D. Jenkins, M. Motamedi, E. L. Sinofsky, “Plaque–media rewelding with reversible tissue optical properties changes during receptive cw Nd:YAG laser exposure,” Lasers Surg. Med. 8, 477–485 (1988).
[CrossRef] [PubMed]

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 microns,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef] [PubMed]

R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd:YAG wavelength,” Lasers Surg. Med. 11 (2), 117–124 (1991).
[CrossRef] [PubMed]

Other (2)

F. A. Duck, Physical Properties of Tissues, 1st ed. (Academic, San Diego, Calif., 1990), Chap. 3.

A. J. Welch, M. J. C. van Gemert, Optical–Thermal Response of Laser Irradiated Tissue, 1st ed. (Plenum, New York, 1995), Chaps. 2–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for the in vitro measurements of the dynamics of optical behavior and the thermal response of tissue during pulsed laser irradiation.

Fig. 2
Fig. 2

Illustration of the irradiation sequence used in the study of the dynamics of tissue optics during pulsed laser irradiation. The numbers 1, 2, and 3 that are circled denote the pulses at which the measurements were taken.

Fig. 3
Fig. 3

Dynamics of the total transmittance of fresh skin (thickness of 0.6 mm) irradiated with a sequence of Nd:YAG laser pulses (510 mJ/mm2). Changes in transmittance within the 1st, 5th, 10th, and 20th pulses are presented. The solid curves are the third-order polynomial least-squares fits to the data. Zero on the time axis represents the start of each laser pulse: Inverted solid triangles represent the 1st pulse, open triangles the 5th pulse, crosses the 10th pulse, and open circles the 20th pulse.

Fig. 4
Fig. 4

Example of the dynamics of (a) the total transmittance and (b) the diffuse reflectance of a fresh human skin sample (thickness, 0.8 mm) irradiated with a sequence of 20 Nd:YAG laser pulses (510 mJ/mm2). The inverted solid triangles represent the time-resolved optical behavior of human skin within the first single laser-pulse application (①), the open triangles the last pulse (20th, ②) in the irradiation sequence, and the crosses the last single laser-pulse application (③). The solid curves are the third-order polynomial least-squares fits to the data. Zero on the time axis represents the start of each laser pulse.

Fig. 5
Fig. 5

Example of the dynamics of (a) the total transmittance and (b) the diffuse reflectance of a fresh aorta sample (thickness 1.2 mm) irradiated with a sequence of 20 Nd:YAG laser pulses (510 mJ/mm2). The inverted solid triangles represent the time-resolved optical behavior of canine aorta within the first single laser pulse application (①), the open triangles the last pulse (20th, ②) in the irradiation sequence, and the crosses the last single laser-pulse application (③). The solid curves are the third-order polynomial least squares fits to the data. Zero on the time axis represents the start of each laser pulse.

Tables (3)

Tables Icon

Table 1 Final Surface Temperatures and Corresponding Optical-Behavior Changes of Human Skin Irradiated with a Sequence of 20 Nd:YAG Laser Pulses at 510 mJ/mm2 a

Tables Icon

Table 2 Final Surface Temperatures and Corresponding Optical-Behavior Changes of Human Skin Irradiated with a Sequence of 20 Nd:YAG Laser Pulses at 510 mJ/mm2 a

Tables Icon

Table 3 Possible Mechanisms Responsible for Inducing Reversible Changes in Tissue Optical Behavior during Laser Heating

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T init = T ( t init ) Ref ( t init ) ,
R init = R ( t init ) Ref ( t init ) ,
T 20 , min = T 20 ( t min ) Ref 20 ( t min ) ,
R 20 , max = R 20 ( t max ) Ref 20 ( t max ) ,
T final = T ( t init ) Ref ( t init ) ,
R final = R ( t init ) Ref ( t init ) ,
Δ T min % = ( T 20 , min T init T init ) 100 %
Δ R max % = ( R 20 , max R init R init ) 100 % ,
Δ T rv % = ( T 20 , min T final Δ T min ) 100 %
Δ T ir % = ( T final T init Δ T min ) 100 %
Δ R rv % = ( R 20 , max R final Δ R max ) 100 %
Δ R ir % = ( R final R init Δ R max ) 100 % ,
Δ T ( t ) = ϕ ( 0 ) μ a t ρ c ,
Δ T ( t ) = ( 6.1 × 10 4 ) t = 12 C .
n ( r , z , t ) = n 0 + Δ T ( r , z , t ) d n d T ,

Metrics