Abstract

The flying light-scattering indicatrix (FLSI, angular dependency of the intensity of light scattered by a moving individual particle) method, based on a scanning flow cytometer (SFC) that permits measurment of individual particle characteristics from light-scattering data, has been used for the determination of size distribution of the following particles: polystyrene latex, milk fat, and spores (Penicillium levitum, Aspergillus pseudoglaucus). The optical system of the SFC and empirical equations provided absolute sizing at the rate of 50 particles/s. Size distributions obtained with the FLSI method and a best-fit procedure using Mie scattering theory have been compared.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Horan, K. A. Muirhead, S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley, New York, 1990), pp. 397–414.
  2. G. M. Quist, P. J. Wyatt, “Empirical solution to the inverse-scattering problem by the optical strip-map technique,” J. Opt. Soc. Am. A 2, 1979–1986 (1985).
    [Crossref]
  3. V. P. Maltsev, “Estimation of morphological characteristics of single particles from light scattering data in flow cytometry,” Russ. Chem. Bull. 43, 1115–1124 (1994).
    [Crossref]
  4. D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24, 1355–1365 (1985).
    [Crossref] [PubMed]
  5. S. G. Ackleson, R. W. Spinard, “Size and refractive index of individual marine particulates: a flow cytometric approach,” Appl. Opt. 27, 1270–1277 (1988).
    [Crossref] [PubMed]
  6. K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
    [Crossref]
  7. A. V. Chernyshev, V. I. Prots, A. A. Doroshkin, V. P. Maltsev, “Measurement of scattering properties of individual particles with a scanning flow cytometer,” Appl. Opt. 34, 6301–6305 (1995).
    [Crossref] [PubMed]
  8. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 609.
  9. L. B. Bangs, Uniform Latex Particles (Seradyn, Inc., Indianapolis, Ind. 46206, 1987), p. 16.
  10. K. B. Raper, D. I. Fennell, The Genus Aspergillus (Kriger, New York, 1973).
  11. K. B. Raper, C. Thom, D. I. Fennell, A Manual of the Penicillia (Williams & Wilkins, Baltimore, Md., 1949).
  12. K. J. Lissant, ed., Emulsions and Emulsion Technology (Marcel Dekker, New York, 1974), Part 1.

1995 (1)

1994 (1)

V. P. Maltsev, “Estimation of morphological characteristics of single particles from light scattering data in flow cytometry,” Russ. Chem. Bull. 43, 1115–1124 (1994).
[Crossref]

1992 (1)

K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
[Crossref]

1988 (1)

1985 (2)

Ackleson, S. G.

Bangs, L. B.

L. B. Bangs, Uniform Latex Particles (Seradyn, Inc., Indianapolis, Ind. 46206, 1987), p. 16.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 609.

Chernyshev, A. V.

Doroshkin, A. A.

Epstein, E. A.

Fennell, D. I.

K. B. Raper, D. I. Fennell, The Genus Aspergillus (Kriger, New York, 1973).

K. B. Raper, C. Thom, D. I. Fennell, A Manual of the Penicillia (Williams & Wilkins, Baltimore, Md., 1949).

Grinbaum, A.

Horan, P. K.

P. K. Horan, K. A. Muirhead, S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley, New York, 1990), pp. 397–414.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 609.

Ito, Y.

K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
[Crossref]

Maltsev, V. P.

A. V. Chernyshev, V. I. Prots, A. A. Doroshkin, V. P. Maltsev, “Measurement of scattering properties of individual particles with a scanning flow cytometer,” Appl. Opt. 34, 6301–6305 (1995).
[Crossref] [PubMed]

V. P. Maltsev, “Estimation of morphological characteristics of single particles from light scattering data in flow cytometry,” Russ. Chem. Bull. 43, 1115–1124 (1994).
[Crossref]

Metz, M. H.

Muirhead, K. A.

P. K. Horan, K. A. Muirhead, S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley, New York, 1990), pp. 397–414.

Munakata, C.

K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
[Crossref]

Prots, V. I.

Quist, G. M.

Raper, K. B.

K. B. Raper, C. Thom, D. I. Fennell, A Manual of the Penicillia (Williams & Wilkins, Baltimore, Md., 1949).

K. B. Raper, D. I. Fennell, The Genus Aspergillus (Kriger, New York, 1973).

Slezak, S. E.

P. K. Horan, K. A. Muirhead, S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley, New York, 1990), pp. 397–414.

Spinard, R. W.

Takeda, K.

K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
[Crossref]

Thom, C.

K. B. Raper, C. Thom, D. I. Fennell, A Manual of the Penicillia (Williams & Wilkins, Baltimore, Md., 1949).

Tycko, D. H.

Wyatt, P. J.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

K. Takeda, Y. Ito, C. Munakata, “Simultaneous measurement of size and refractive index of a fine particle in flowing liquid,” Meas. Sci. Technol. 3, 27–32 (1992).
[Crossref]

Russ. Chem. Bull. (1)

V. P. Maltsev, “Estimation of morphological characteristics of single particles from light scattering data in flow cytometry,” Russ. Chem. Bull. 43, 1115–1124 (1994).
[Crossref]

Other (6)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 609.

L. B. Bangs, Uniform Latex Particles (Seradyn, Inc., Indianapolis, Ind. 46206, 1987), p. 16.

K. B. Raper, D. I. Fennell, The Genus Aspergillus (Kriger, New York, 1973).

K. B. Raper, C. Thom, D. I. Fennell, A Manual of the Penicillia (Williams & Wilkins, Baltimore, Md., 1949).

K. J. Lissant, ed., Emulsions and Emulsion Technology (Marcel Dekker, New York, 1974), Part 1.

P. K. Horan, K. A. Muirhead, S. E. Slezak, “Standards and controls in flow cytometry,” in Flow Cytometry and Sorting, 2nd ed., M. R. Melamed, T. Lindmo, M. L. Mendelsohn, eds. (Wiley, New York, 1990), pp. 397–414.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the hydrofocusing head with an optical cuvette.

Fig. 2
Fig. 2

Particle size as a function of difference between the first and second minima that occur after the boundary angle of 20° for latex particles (solid curve) and after the boundary angle of 15° for spores and milk fat particles (dashed curve).

Fig. 3
Fig. 3

Experimental FLSI ofone latex particle (filled circles) and the best-fit function calculated from the Mie theory for these experimental data (solid curve). The best-fit function gives the following parameters for the particle: 2.92 size and 1.571 refractive index.

Fig. 4
Fig. 4

Size distribution of latex particles obtained by a) the FLSI method and b) the Mie fitting method.

Fig. 5
Fig. 5

Experimental FLSI's (filled circles) of a) Penicillium levitum, b) Aspergillus pseudoglaucus spores, and c) milk fat particle and best-fit functions 1solid curve) calculated from Mie theory.

Fig. 6
Fig. 6

Size distribution of Penicillium levitum spores obtained by a) the FLSI method and b) the Mie fitting method.

Fig. 7
Fig. 7

Size distribution of Aspergillus pseudoglaucus spores obtained by a) the FLSI method and b) the Mie fitting method.

Fig. 8
Fig. 8

Size distribution of milk fat particles obtained by a) the FLSI method and b) the Mie fitting method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d ( μ m ) = p 1 + p 2 [ Δ 2 ( 20 ) ] 1 + p 3 [ Δ 2 ( 20 ) ] 3 ,
d ( μ m ) = p 1 + p 2 [ Δ 2 ( 15 ) ] 1 + p 3 [ Δ 2 ( 15 ) ] 5 + p 4 [ Δ 2 ( 15 ) ] 6 ,

Metrics