Abstract

We demonstrate a lanthanum-modified lead zirconate titanate ceramic-based electro-optic beam-steering device that has a 3 mm × 3 mm working area. A series of resistors were made by evaporation of chromium onto the substrate to produce and control the required voltage distribution among the electrodes. A steering angle of 0.04° was obtained with an applied voltage of 700 V. Design considerations, computer simulations, and experimental results are presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Goltsos, M. Holz, “Agile beam steering using binary optical microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  2. M. W. Farn, “Agile beam steering using phase-arraylike binary optics,” Appl. Opt. 33, 5151–5158 (1994).
    [CrossRef] [PubMed]
  3. C. L. M. Ireland, J. M. Ley, Electrooptic Scanners (Dekker, New York, 1991).
  4. E. A. Watson, “Analysis of steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
    [CrossRef]
  5. E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).
  6. E. A. Watson, L. J. Barnes, “Optical design considerations for agile beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 186–193 (1994).
  7. R. M. Matic, “Blazed phase liquid crystal beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 194–205 (1994).
  8. T. Utsunomiya, “Optical deflector with tandem electrodes using PLZT ceramic,” Jpn. J. Appl. Phys. Suppl. 28-2, 164–166 (1989).
  9. R. A. Meyer, “Optical beam steering using a multichannel lithium tantalate crystal,” Appl. Opt. 11, 613–616 (1972).
    [CrossRef] [PubMed]
  10. Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
    [CrossRef]
  11. G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [PubMed]
  12. H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).
  13. T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
    [CrossRef] [PubMed]
  14. T. Tatebayashi, T. Yamamoto, H. Sato, “Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic,” Appl. Opt. 31, 2770–2775 (1992).
    [CrossRef] [PubMed]
  15. K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. Suppl. 28, 167–169 (1989).
  16. T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
    [CrossRef]
  17. Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
    [CrossRef]
  18. P. J. Talbot, Q. W. Song, “Design and simulation of PLZT-based electrooptic phased array scanners,” Opt. Memory Neural Net 3, 111–117 (1994).
  19. P. J. Talbot, “Design and simulation of PLZT-based scanning grating lobe optical array generators,” Opt. Commun. 113, 378–384 (1995).
    [CrossRef]
  20. J. A. Thomas, Y. Fainman, “Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
    [CrossRef] [PubMed]
  21. N. A. Riza, M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [CrossRef] [PubMed]
  22. D. H. Goldstein, “PLZT modulator characterization,” Opt. Eng. 34, 1589–1592 (1995).
    [CrossRef]

1995 (3)

P. J. Talbot, “Design and simulation of PLZT-based scanning grating lobe optical array generators,” Opt. Commun. 113, 378–384 (1995).
[CrossRef]

J. A. Thomas, Y. Fainman, “Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
[CrossRef] [PubMed]

D. H. Goldstein, “PLZT modulator characterization,” Opt. Eng. 34, 1589–1592 (1995).
[CrossRef]

1994 (5)

N. A. Riza, M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
[CrossRef] [PubMed]

Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

P. J. Talbot, Q. W. Song, “Design and simulation of PLZT-based electrooptic phased array scanners,” Opt. Memory Neural Net 3, 111–117 (1994).

M. W. Farn, “Agile beam steering using phase-arraylike binary optics,” Appl. Opt. 33, 5151–5158 (1994).
[CrossRef] [PubMed]

G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
[PubMed]

1993 (1)

E. A. Watson, “Analysis of steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

1992 (1)

1991 (1)

1990 (2)

W. Goltsos, M. Holz, “Agile beam steering using binary optical microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

1989 (2)

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. Suppl. 28, 167–169 (1989).

T. Utsunomiya, “Optical deflector with tandem electrodes using PLZT ceramic,” Jpn. J. Appl. Phys. Suppl. 28-2, 164–166 (1989).

1973 (1)

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[CrossRef]

1972 (1)

Barnes, L. J.

E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).

E. A. Watson, L. J. Barnes, “Optical design considerations for agile beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 186–193 (1994).

Carney, A. J.

E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).

DeJule, M. C.

Fainman, Y.

Farn, M. W.

Goldstein, D. H.

D. H. Goldstein, “PLZT modulator characterization,” Opt. Eng. 34, 1589–1592 (1995).
[CrossRef]

Goltsos, W.

W. Goltsos, M. Holz, “Agile beam steering using binary optical microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Hayashi, K.

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).

Holz, M.

W. Goltsos, M. Holz, “Agile beam steering using binary optical microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Honma, H.

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. Suppl. 28, 167–169 (1989).

Ireland, C. L. M.

C. L. M. Ireland, J. M. Ley, Electrooptic Scanners (Dekker, New York, 1991).

Ley, J. M.

C. L. M. Ireland, J. M. Ley, Electrooptic Scanners (Dekker, New York, 1991).

Love, G. D.

Major, J. V.

Matic, R. M.

R. M. Matic, “Blazed phase liquid crystal beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 194–205 (1994).

Maurice, J. H.

Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

McManamon, P. F.

E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).

Meyer, R. A.

Nagata, K.

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. Suppl. 28, 167–169 (1989).

Ninomiya, Y.

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[CrossRef]

Purvis, A.

Riza, N. A.

Sato, H.

T. Tatebayashi, T. Yamamoto, H. Sato, “Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic,” Appl. Opt. 31, 2770–2775 (1992).
[CrossRef] [PubMed]

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).

Song, Q. W.

P. J. Talbot, Q. W. Song, “Design and simulation of PLZT-based electrooptic phased array scanners,” Opt. Memory Neural Net 3, 111–117 (1994).

Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

Talbot, P. J.

P. J. Talbot, “Design and simulation of PLZT-based scanning grating lobe optical array generators,” Opt. Commun. 113, 378–384 (1995).
[CrossRef]

Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

P. J. Talbot, Q. W. Song, “Design and simulation of PLZT-based electrooptic phased array scanners,” Opt. Memory Neural Net 3, 111–117 (1994).

Tatebayashi, T.

T. Tatebayashi, T. Yamamoto, H. Sato, “Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic,” Appl. Opt. 31, 2770–2775 (1992).
[CrossRef] [PubMed]

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).

Thomas, J. A.

Utsunomiya, T.

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

T. Utsunomiya, “Optical deflector with tandem electrodes using PLZT ceramic,” Jpn. J. Appl. Phys. Suppl. 28-2, 164–166 (1989).

Watson, E. A.

E. A. Watson, “Analysis of steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).

E. A. Watson, L. J. Barnes, “Optical design considerations for agile beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 186–193 (1994).

Yamamoto, T.

T. Tatebayashi, T. Yamamoto, H. Sato, “Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic,” Appl. Opt. 31, 2770–2775 (1992).
[CrossRef] [PubMed]

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).

Appl. Opt. (4)

Ferroelectrics (1)

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[CrossRef]

J. Mod. Opt. (1)

Q. W. Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (2)

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. Suppl. 28, 167–169 (1989).

T. Utsunomiya, “Optical deflector with tandem electrodes using PLZT ceramic,” Jpn. J. Appl. Phys. Suppl. 28-2, 164–166 (1989).

Opt. Commun. (1)

P. J. Talbot, “Design and simulation of PLZT-based scanning grating lobe optical array generators,” Opt. Commun. 113, 378–384 (1995).
[CrossRef]

Opt. Eng. (3)

D. H. Goldstein, “PLZT modulator characterization,” Opt. Eng. 34, 1589–1592 (1995).
[CrossRef]

W. Goltsos, M. Holz, “Agile beam steering using binary optical microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

E. A. Watson, “Analysis of steering with decentered microlens arrays,” Opt. Eng. 32, 2665–2670 (1993).
[CrossRef]

Opt. Lett. (3)

Opt. Memory Neural Net (1)

P. J. Talbot, Q. W. Song, “Design and simulation of PLZT-based electrooptic phased array scanners,” Opt. Memory Neural Net 3, 111–117 (1994).

Other (5)

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigolt, eds., SPIE 1319, 493–494 (1990).

E. A. Watson, P. F. McManamon, L. J. Barnes, A. J. Carney, “Application of dynamic gratings to broad spectral band beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 178–185 (1994).

E. A. Watson, L. J. Barnes, “Optical design considerations for agile beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 186–193 (1994).

R. M. Matic, “Blazed phase liquid crystal beam steering,” in Laser Beam Propagation and Control, H. Weichel, L. F. DeSandre, eds., SPIE 2120, 194–205 (1994).

C. L. M. Ireland, J. M. Ley, Electrooptic Scanners (Dekker, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three-dimensional view of the PLZT-based electro-optic steering device.

Fig. 2
Fig. 2

Far-field patterns of a laser beam passing through the 100-μm-period device (a) without the device, (b) with the device but without applied voltage, and (c) with an applied voltage of 600 V.

Fig. 3
Fig. 3

Calculated voltage distribution inside PLZT; (x, y) indicates the coordinate of the plane perpendicular to the electrodes with x on the PLZT top surface.

Fig. 4
Fig. 4

Setup utilized to measure the response time of the device. ND, neutral density; HP, Hewlett Packard.

Fig. 5
Fig. 5

Simulated far-field diffractions with and without an applied voltage for light with polarization (a) parallel and (b) perpendicular to the electrode orientation.

Fig. 6
Fig. 6

Comparison of the experimental and simulated relation between the applied voltage and the steering angle.

Fig. 7
Fig. 7

Simulated voltage dependence on the electrode width for the case that the steering angle is fixed at 0.04°. Voltage unit, 5.38 V.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 / 2 n 0 3 R 12 E 2 ,
Δ n m = 1 2 n 0 3 R 12 ( V m t ) 2 m , m = 1 , 2 , , N ,
V m m = m V 1
θ = t W Δ n N = n 0 3 R 12 V 2 2 t W = n 0 3 R 12 V 1 2 2 t ( d + a ) ,
Δ V m = V m - V m - 1 = ( m - m - 1 ) V 1 .
R m R 1 = Δ V m Δ V 1 = ( m - m - 1 ) .
V ( x , y ) x = 0 = 0 ,
V ( x , y ) y = t = 0 ,
V ( x , y ) y = 0 = { 0 0 x < d x - a d V 1 d x < p V 1 p x < p + d V 1 + x - p - d d ( V 2 - V 1 ) p + d x < 2 p V 2 2 p x < 2 p + d V N - 1 + x - W + p d ( V N - V N - 1 ) W - p x < W - d V N W - d x < W ,
V ( x + 4 m W , y ) = V ( x , y ) ,
V [ x + ( 4 m + 1 ) W , y ] = V ( W - x , y ) ,
V ( x + ( 4 m + 2 ) W , y ] = - V ( x , y ) ,
V ( x , y ) = n = 1 sin ( ξ n x ) [ A ( ξ n ) exp ( ξ n y ) + B ( ξ n ) exp ( - ξ n y ) ] ,
ξ n = n π 2 W .
V ( x , y ) = n = 1 sin ( ξ 2 n - 1 x ) P ( ξ 2 n - 1 ) sinh [ ξ 2 n - 1 ( t - y ) ] sinh ( ξ 2 n - 1 t ) ,
P ( ξ n ) = 2 W 0 W V ( x , y ) y = 0 sin ( ξ n x ) d x .
E x ( x , y ) = - V ( x , y ) x = - n = 1 ξ 2 n - 1 cos ( ξ 2 n - 1 x ) P ( ξ 2 n - 1 ) × sinh [ ξ 2 n - 1 ( t - y ) ] sinh ( ξ 2 n - 1 t ) ,
E y ( x , y ) = - V ( x , y ) y = n = 1 ξ 2 n - 1 cos ( ξ 2 n - 1 x ) P ( ξ 2 n - 1 ) × cosh [ ξ 2 n - 1 ( t - y ) ] sinh ( ξ 2 n - 1 t ) .
E ( x , y ) = E x 2 ( x , y ) + ( E y 2 ( x , y ) ,
θ ( x , y ) = cos - 1 [ E y ( x , y ) E ( x , y ) ] .
n x ( x , y ) = n 0 - 1 / 2 n 0 3 R 11 E 2 ( x , y ) ,
n y ( x , y ) = n 0 - 1 / 2 n 0 3 R 12 E 2 ( x , y ) ,
n z ( x , y ) = n 0 - 1 / 2 n 0 3 R 12 E 2 ( x , y ) ,
1 n x 2 ( x , y ) = sin 2 [ θ ( x , y ) ] n x 2 ( x , y ) + cos 2 [ θ ( x , y ) ] n y 2 ( x , y ) .
ϕ x ( x ) = 2 π λ 0 t n x ( x , y ) d y ,
ϕ z ( x ) = 2 π λ 0 t n z ( x , y ) d y ,

Metrics