Abstract

The holographic first-arriving-light method in combination with the speckle differencing method is used to provide resolution-enhanced detection of moving objects embedded in scattering media. Results show that the first-arriving-light technique provides significant resolution improvements over standard speckle differencing.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
    [CrossRef]
  2. A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).
  3. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, T. Ohura, “Evaluation of blood flow by laser speckle image sensing. Part 1,” Appl. Opt. 26, 5321–5325 (1987).
    [CrossRef] [PubMed]
  4. Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
    [CrossRef] [PubMed]
  5. N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
    [CrossRef]
  6. H. Fujii, T. Asakura, K. Nohira, Y. Shimtomi, T. Ohura, “Blood flow observed by time-varying laser speckle,” Opt. Lett. 10, 104–106 (1985).
    [CrossRef] [PubMed]
  7. P. Naulleau, D. Dilworth, E. Leith, J. Lopez, “Detection of moving objects embedded within scattering media by use of speckle methods,” Opt. Lett. 20, 498–500 (1995).
    [CrossRef] [PubMed]
  8. M. A. Duguay, A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef] [PubMed]
  9. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–332 (1990).
    [CrossRef] [PubMed]
  10. J. G. Fujimoto, S. De Silversti, E. P. Ippen, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150–152 (1986).
    [CrossRef] [PubMed]
  11. K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
    [CrossRef] [PubMed]
  12. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  13. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
    [CrossRef] [PubMed]

1995 (1)

1994 (1)

1992 (2)

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
[CrossRef] [PubMed]

N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
[CrossRef]

1991 (1)

1990 (1)

1989 (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

1987 (1)

1986 (2)

J. G. Fujimoto, S. De Silversti, E. P. Ippen, R. Margolis, A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150–152 (1986).
[CrossRef] [PubMed]

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

1985 (1)

1981 (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

1971 (1)

Abramson, N.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Aizu, Y.

Alfano, R. R.

Asakura, T.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Chen, H.

Chen, Y.

De Silversti, S.

Dilworth, D.

Duguay, M. A.

Fercher, A. F.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Fujii, H.

Fujimoto, J. G.

Ikawa, H.

Ippen, E. P.

Leith, E.

Lopez, J.

Margolis, R.

Mattick, A. T.

Naulleau, P.

Nohira, K.

Ogino, K.

Ohura, T.

Oseroff, A.

Peukert, M.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Pomarico, J. A.

N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
[CrossRef]

Roth, E.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Russo, N. A.

N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
[CrossRef]

Serafin, J.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Shimtomi, Y.

Sicre, E. E.

N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
[CrossRef]

Spears, K. G.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Sugita, T.

Takai, N.

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
[CrossRef] [PubMed]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

Valdmanis, J.

Yamamoto, T.

Yamamoto, Y.

Yoo, K. M.

Zhu, X.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. A. Russo, J. A. Pomarico, E. E. Sicre, “Optical velocimetry: a method using two shifted speckle patterns,” Opt. Commun. 90, 227–230 (1992).
[CrossRef]

Opt. Eng. (1)

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for delay and subtract speckle imaging.

Fig. 2
Fig. 2

Experimental setup for speckle differencing combined with first-arriving light.

Fig. 3
Fig. 3

Moving a 0.2-mm wire cross behind two plates of etched glass each having a zero specular transmission component: (a) single first-arriving-light image, (b) speckle difference first-arriving-light image, (c) single nongated image, (d) nongated speckle difference image.

Fig. 4
Fig. 4

Moving a 0.2-mm wire cross behind 9.4 mm of paraffin wax: (a) single first-arriving-light image, (b) speckle difference first-arriving-light image, (c) single nongated image, (d) nongated speckle difference image.

Metrics