Abstract

Commercially available InGaAs/InP avalanche photodiodes, designed for optical receivers and range finders, can be operated biased above the breakdown voltage, achieving single-photon sensitivity. We describe in detail how to select the device for photon-counting applications among commercial samples. Because of the high dark-counting rate the detector must be cooled to below 100 K and operated in a gated mode. We achieved a noise equivalent power of 3 × 10−16 W/Hz1/2 to a 1.55-μm wavelength and a time resolution well below 1 ns with a best value of 200-ps FWHM. Finally we compare these figures with the performance of state-of-the-art detectors in the near IR, and we highlight the potentials of properly designed InGaAs/InP avalanche photodiodes in single-photon detection.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
    [CrossRef] [PubMed]
  2. B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
    [CrossRef]
  3. Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
    [CrossRef]
  4. S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).
  5. Properties of Indium Phosphide, Data Review series 6, an Inspec Publication (Unwin Brothers, The Gresham Press, London, UK, 1991).
  6. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.
  7. W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
    [CrossRef]
  8. Hamamatsu announced in 1994 a new photomultiplier with spectral response extended as high as 1.7 μm. Currently it is marketed only in Japan because of a pending international patent.
  9. D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1983).
  10. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
    [CrossRef]
  11. Data are reported on a 256 × 256 HgCdTe focal plane array manufactured by Rockwell Corporation, Thousand Oaks, Calif.
  12. R. L. Bell, “Long-wavelength photoemission cathode,” U.S. patent3,958,143 (1977).
  13. K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

1994 (1)

1989 (1)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

1985 (1)

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

1984 (1)

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

1972 (1)

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
[CrossRef]

1965 (1)

S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).

Aebi, V.

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Aliev, S. A.

S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).

Antognetti, P.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
[CrossRef]

Bell, R. L.

R. L. Bell, “Long-wavelength photoemission cathode,” U.S. patent3,958,143 (1977).

Bethea, C. G.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Campbell, J. C.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Costello, K.

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Cova, S.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Davis, G.

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Francese, P. A.

Ghioni, M.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Kishi, Y.

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

La Rue, R.

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Lacaita, A.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Levine, B. T.

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Louis, T. A.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Nakajima, K.

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

Nashelskii, A. Ya.

S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1983).

Oldham, W. G.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
[CrossRef]

Phillips, D.

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1983).

Ripamonti, G.

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Samori, C.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Samuelson, R. R.

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
[CrossRef]

Shalyt, S. S.

S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).

Umebu, I.

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

Weiss, R.

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Yamakazi, S.

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

Yasuda, K.

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

Zappa, F.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. T. Levine, C. G. Bethea, J. C. Campbell, “Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector,” Appl. Phys. Lett. 46, 333–335 (1985).
[CrossRef]

Electron. Lett. (1)

Y. Kishi, K. Yasuda, S. Yamakazi, K. Nakajima, I. Umebu, “Liquid-phase-epitaxial growth of InP/InGaAsP/InGaAs buried-structure avalanche photodiode,” Electron. Lett. 20, 165–167 (1984).
[CrossRef]

IEEE Trans. Electron Devices (1)

W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1063 (1972).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20 ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989).
[CrossRef]

Sov. Phys. Solid State (1)

S. A. Aliev, A. Ya. Nashelskii, S. S. Shalyt, “Temperature dependence of indium phosphide thermal resistance,” Sov. Phys. Solid State 7, 1287–1232 (1965).

Other (7)

Properties of Indium Phosphide, Data Review series 6, an Inspec Publication (Unwin Brothers, The Gresham Press, London, UK, 1991).

S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt., to be published.

Data are reported on a 256 × 256 HgCdTe focal plane array manufactured by Rockwell Corporation, Thousand Oaks, Calif.

R. L. Bell, “Long-wavelength photoemission cathode,” U.S. patent3,958,143 (1977).

K. Costello, V. Aebi, G. Davis, R. La Rue, R. Weiss, “Transferred electron photocathode with greater than 20% quantum efficiency beyond 1 μm,” in Photodetectors and Power Meters II, K. Muray, K. J. Kaufmann, eds., Proc. SPIE 2550, 529–537 (1995).

Hamamatsu announced in 1994 a new photomultiplier with spectral response extended as high as 1.7 μm. Currently it is marketed only in Japan because of a pending international patent.

D. V. O’Connor, D. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic band diagram of InGaAs/InP APD’s.

Fig. 2
Fig. 2

Photocurrent for a F-APD versus reverse bias at different temperatures.

Fig. 3
Fig. 3

Experimental setup for measuring the APD’s current pulse.

Fig. 4
Fig. 4

Current pulse of a F-APD biased 1.6 V above breakdown.

Fig. 5
Fig. 5

Dependence of the avalanche peak current on the excess bias for an E-APD at 77 K.

Fig. 6
Fig. 6

Avalanche area diameter of both samples as a function of excess bias.

Fig. 7
Fig. 7

Current pulse of an E-APD biased 3.8 V above breakdown.

Fig. 8
Fig. 8

Dark-counting rate of a F-APD at 77 K versus the time interval between subsequent activations of the detector.

Fig. 9
Fig. 9

Detection efficiency and NEP at 1.3 μm versus the temperature when the E-APD is biased 5.7 V above V B .

Fig. 10
Fig. 10

Detection efficiency at 1.3 μm when the F-APD is biased 1.5 V above breakdown versus temperature.

Fig. 11
Fig. 11

Dependence of the NEP of the F-APD at 77 K on the excess bias.

Fig. 12
Fig. 12

Comparison of the NEP’s of some APD’s and PMT’s photocathodes.

Fig. 13
Fig. 13

Timing of a 1.3-μm laser pulse measured by a E-APD at 77 and 100 K with a 6-V excess bias. The inset shows the timing of a 850-nm laser pulse in the same operating conditions.

Fig. 14
Fig. 14

Timing of a 1.3-μm laser pulse measured by a F-APD at 77 and 100 K with 3.8-V excess bias. Note the sharp peak and the almost negligibly slow tail caused by the heterobarrier crossed by photogenerated holes.

Fig. 15
Fig. 15

Conventional analog detection system with a p-i-n detector.

Fig. 16
Fig. 16

Schematic circuit used by Rockwell Corporation for the array of HgCdTe photodiodes operated in the photovoltaic mode.

Tables (1)

Tables Icon

Table 1 Estimated Trap Densities and Capture Cross Sections

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I = V 0 - V B R S ,
R S ( V ) = w 2 ( V ) 2 ν S A ( V ) ,
I ( V 0 ) = V B V 0 d V R S ( V ) = V B V 0 2 ν S A ( V ) w 2 ( V ) d V .
A ( V 0 ) = w 2 ( V 0 ) 2 ν s d I d V | V 0 .
Δ I = d V B d T Δ T R S = γ P d R th R S ,
Δ I = V B R S n T n D ,
C 0 = C 1 - C × T D .
NEP = h v η ( 2 R ) 1 / 2 .
½ C ν n 2 = ½ k T .
σ Q 2 = ν n 2 C 2 = kTC .
R eq = 1 C f S .
S l = σ l 2 4 R eq C = 4 k T R eq .

Metrics