Abstract

We explore theoretically the design of multilayer beam splitters for the far-infrared that are based on coated pellicles as well as on solid substrates. The specific design criterion considered is as high a value as possible of the efficiency E = 4RT throughout the 10–140-μm spectral region. Here R and T are the reflectance and the transmittance of the beam splitter, respectively. In the numerical study the refractive indices of the substrates and coating materials varied between 1.50 and 4.00. To survey the range of designs, we make a number of simplifying assumptions, the significance of which is later investigated. Various potential manufacturing problems are considered. It is shown that the performance of the beam splitters is not sensitive to the accuracy with which the layer thicknesses can be controlled. However, it does depend strongly on the lowest available refractive index of the coating materials. The performance is particularly sensitive to the extinction coefficients of solid substrate materials. Multilayer designs presented should be useful for use in Fourier-transform spectrometers, as well as in other applications that do not require as high a spectral resolution.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. I. Foteva, “Double-beam interferometers, applicable to Fourier spectroscopy,” Sov. J. Opt. Technol. 42, 282–288 (1975).
  2. J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
    [CrossRef]
  3. B. Carli, M. Carlotti, F. Mencaraglia, E. Rossi, “Far-infrared high-resolution Fourier transform spectrometer,” Appl. Opt. 26, 3818–3822 (1987).
    [CrossRef] [PubMed]
  4. W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).
  5. D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
    [CrossRef]
  6. D. H. Martin, E. Puplett, “Polarized interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1970).
    [CrossRef]
  7. C. H. Perry, R. Geick, E. F. Young, “Solid state studies by means of Fourier transform spectroscopy,” Appl. Opt. 5, 1171–1177 (1966).
    [CrossRef] [PubMed]
  8. J. L. Deuzé, A. L. Fymat, “Instrumentation optimization in Fourier spectroscopy. 1: Far infrared beam splitters,” Appl. Opt. 13, 1807–1813 (1974).
    [CrossRef] [PubMed]
  9. G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
    [CrossRef]
  10. D. Labrie, I. J. Booth, M. L. W. Thowalt, B. P. Clayman, “Use of polypropylene film for infrared cryogenic windows,” Appl. Opt. 25, 171–172 (1986).
    [CrossRef] [PubMed]
  11. D. R. Smith, E. V. Loewenstein, “Optical constants of far infrared materials. 3. Plastics,” Appl. Opt. 14, 1335 (1975).
    [CrossRef] [PubMed]
  12. J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene (C2H4)n,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 957–987.
  13. R. J. Scheuerman, J. H. Beardsley, “Unsupported thin film beamsplitter,” Perkin-Elmer Tech. Rep. 9337 (Perkin-Elmer, Norwalk, 1968).
  14. K. Hancock, “Membrane optics,” in Proceedings, Electro-Optical Systems Design Conference (Industrial and Scientific Conference Management, Chicago, 1969), pp. 231–237.
  15. R. Machorro, L. E. Regalado, J. M. Siqueiros, “Optical properties of parylene and its use as substrate in beam splitters,” Appl. Opt. 30, 2778–2781 (1991).
    [CrossRef] [PubMed]
  16. E. V. Loewenstein, D. R. Smith, “Optical constants of far infrared materials. 1. Analysis of chanelled spectra and application to Mylar,” Appl. Opt. 12, 577–583 (1971).
    [CrossRef]
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla.1985).
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Boston, 1991).
  19. S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.
  20. E. D. Palik, A. Addamiano, “Zinc sulfide (ZnS),” in Ref. 17, pp. 597–619.
  21. L. Ward, “Zinc selenide (ZnSe), zinc telluride (ZnTe),” in Ref. 18, pp. 737–758.
  22. A. Borghesi, G. Guizzetti, “Graphite (C),” in Ref. 18, pp. 449–460.
  23. D. F. Edwards, H. R. Philipp, “Cubic carbon (diamond),” in Ref. 17, pp. 665–673.
  24. E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far infrared materials. 2. Crystalline solids,” Appl. Opt. 12, 398–406 (1973).
    [CrossRef] [PubMed]
  25. D. F. Edwards, “Silicon (Si),” in Ref. 17, pp. 547–569.
  26. H. Piller, “Silicon (amorphous) (a-Si),” in Ref. 17, pp. 571–586.
  27. O. J. Gembocki, H. Piller, “Indium phosphide (InP),” in Ref. 17, pp. 503–516.
  28. E. D. Palik, “Gallium arsenide (GaAs),” in Ref. 17, pp. 429–443.
  29. D. F. Edwards, R. H. White, “Gallium-antimonide (GaSb),” in Ref. 18, pp. 597–606.
  30. R. F. Potter, “Germanium (Ge),” in Ref. 17, pp. 465–478.
  31. A. F. Perveev, G. A. Muranova, “Obtention of thin films of polyethylene by evaporation in vacuo,” Instrum. Exp. Tech. (USSR) 4, 1036–1037 (1969).
  32. P. P. Luff, M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films 6, 175–195 (1970).
    [CrossRef]
  33. G. D. Pridatko, A. V. Dement’ev, “Multilayer interference coatings on polymer materials,” Sov. J. Opt. Technol. 42, 467–469 (1975).
  34. B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” Appl. Opt. (to be published).
  35. A. L. Fymat, “Jones’s matrix representation of optical instruments. 2. Fourier interferometers (spectrometers and spectropolarimeters),” Appl. Opt. 10, 2711–2716 (1971).
    [CrossRef] [PubMed]
  36. A. L. Fymat, “Polarization effects in Fourier spectroscopy. I: coherency matrix representation,” Appl. Opt. 11, 160–173 (1972).
    [CrossRef] [PubMed]
  37. D. R. Smith, E. V. Loewenstein, “Far-infrared thin-film beam splitters: calculated properties,” Appl. Opt. 14, 2473–2475 (1975).
    [CrossRef] [PubMed]
  38. D. A. Naylor, R. T. Boreiko, T. A. Clark, “Mylar beam-splitter efficiency in far infrared interferometers: angle of incidence and absorption effects,” Appl. Opt. 17, 1055–1058 (1978).
    [CrossRef] [PubMed]
  39. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1986).
    [CrossRef]
  40. N. L. Rowell, E. A. Wang, “A bilayer free-standing beam splitter for Fourier-transform infrared spectrometry,” Appl. Opt. 35, 2927–2933 (1996).
    [CrossRef] [PubMed]
  41. N. L. Rowell, E. A. Wang, “Silicon-coated beamsplitter,” U.S. patent application08/352.026 (October1994).
  42. Bomem Ltd., 450 St-Jean Baptiste, Quebec, Canada G2E 5S5.
  43. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 42.1–42.130.
  44. P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).
  45. P. H. Berning, “Use of equivalent films in the design of infrared multilayer antireflection coatings,” J. Opt. Soc. Am. 52, 431–436 (1962).
    [CrossRef]
  46. “Ultrathin silicon,” in Photonic Spectra (Virginia Semiconductor Inc, Fredericksburg, Va., August1990), p. 160.
  47. M. J. Schwartz, “Solving design problems with pellicles,” Electro-Opt. Syst. Des.88–94 (Aug.1970).
  48. M. A. Spivack, “Parylene thin films for radiation applications,” Rev. Sci. Instrum. 41, 1614–1616 (1970).
    [CrossRef]
  49. R. Iscoff, “Pellicles-A means to increase die yield,” Semicond. Int. X, 95–108 (1982).
  50. R. J. Serviss, “Preliminary report on interference filters for the 20 to 1000 micron spectral region,” in Long-Wavelength Infrared, W. L. Wolfe, ed., Proc. SPIE 67, 76–80 (1975).
  51. J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
    [CrossRef] [PubMed]
  52. J. A. Dobrowolski, F. C. Ho, A. J. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
    [CrossRef] [PubMed]

1996

1995

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

1993

1991

1990

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

1989

1987

1986

1982

R. Iscoff, “Pellicles-A means to increase die yield,” Semicond. Int. X, 95–108 (1982).

1978

1977

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

1975

I. I. Foteva, “Double-beam interferometers, applicable to Fourier spectroscopy,” Sov. J. Opt. Technol. 42, 282–288 (1975).

G. D. Pridatko, A. V. Dement’ev, “Multilayer interference coatings on polymer materials,” Sov. J. Opt. Technol. 42, 467–469 (1975).

D. R. Smith, E. V. Loewenstein, “Optical constants of far infrared materials. 3. Plastics,” Appl. Opt. 14, 1335 (1975).
[CrossRef] [PubMed]

D. R. Smith, E. V. Loewenstein, “Far-infrared thin-film beam splitters: calculated properties,” Appl. Opt. 14, 2473–2475 (1975).
[CrossRef] [PubMed]

1974

1973

1972

1971

E. V. Loewenstein, D. R. Smith, “Optical constants of far infrared materials. 1. Analysis of chanelled spectra and application to Mylar,” Appl. Opt. 12, 577–583 (1971).
[CrossRef]

A. L. Fymat, “Jones’s matrix representation of optical instruments. 2. Fourier interferometers (spectrometers and spectropolarimeters),” Appl. Opt. 10, 2711–2716 (1971).
[CrossRef] [PubMed]

1970

P. P. Luff, M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films 6, 175–195 (1970).
[CrossRef]

D. H. Martin, E. Puplett, “Polarized interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1970).
[CrossRef]

M. A. Spivack, “Parylene thin films for radiation applications,” Rev. Sci. Instrum. 41, 1614–1616 (1970).
[CrossRef]

1969

A. F. Perveev, G. A. Muranova, “Obtention of thin films of polyethylene by evaporation in vacuo,” Instrum. Exp. Tech. (USSR) 4, 1036–1037 (1969).

1966

1962

Addamiano, A.

E. D. Palik, A. Addamiano, “Zinc sulfide (ZnS),” in Ref. 17, pp. 597–619.

Alterovitz, S. A.

S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.

Ashok, J.

J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene (C2H4)n,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 957–987.

Bastien, R. C.

P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).

Beardsley, J. H.

R. J. Scheuerman, J. H. Beardsley, “Unsupported thin film beamsplitter,” Perkin-Elmer Tech. Rep. 9337 (Perkin-Elmer, Norwalk, 1968).

Bennett, C. L.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Berning, P. H.

Birch, J. R.

J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene (C2H4)n,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 957–987.

Boggess, N. W.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Booth, I. J.

Boreiko, R. T.

Borghesi, A.

A. Borghesi, G. Guizzetti, “Graphite (C),” in Ref. 18, pp. 449–460.

Carli, B.

Carlotti, M.

Chance, K. V.

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).

Cheng, E. S.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Clark, T. A.

Clayman, B. P.

Dement’ev, A. V.

G. D. Pridatko, A. V. Dement’ev, “Multilayer interference coatings on polymer materials,” Sov. J. Opt. Technol. 42, 467–469 (1975).

Deuzé, J. L.

Dobrowolski, J. A.

J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. J. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
[CrossRef] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” Appl. Opt. (to be published).

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 42.1–42.130.

Dwek, E.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Edwards, D. F.

D. F. Edwards, H. R. Philipp, “Cubic carbon (diamond),” in Ref. 17, pp. 665–673.

D. F. Edwards, R. H. White, “Gallium-antimonide (GaSb),” in Ref. 18, pp. 597–606.

D. F. Edwards, “Silicon (Si),” in Ref. 17, pp. 547–569.

Eplee, R. E.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Foteva, I. I.

I. I. Foteva, “Double-beam interferometers, applicable to Fourier spectroscopy,” Sov. J. Opt. Technol. 42, 282–288 (1975).

Fymat, A. L.

Geick, R.

Gembocki, O. J.

O. J. Gembocki, H. Piller, “Indium phosphide (InP),” in Ref. 17, pp. 503–516.

Guizzetti, G.

A. Borghesi, G. Guizzetti, “Graphite (C),” in Ref. 18, pp. 449–460.

Gulkis, S.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Hancock, K.

K. Hancock, “Membrane optics,” in Proceedings, Electro-Optical Systems Design Conference (Industrial and Scientific Conference Management, Chicago, 1969), pp. 231–237.

Hauser, M. G.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Heinrich, P. L.

P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).

Ho, F. C.

Isaacman, R. B.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Iscoff, R.

R. Iscoff, “Pellicles-A means to increase die yield,” Semicond. Int. X, 95–108 (1982).

Janssen, M.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Johnson, D. G.

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).

Jucks, K. W.

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).

Kampffmeyer, G.

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Kesall, T.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Labrie, D.

Loewenstein, E. V.

Lubin, P. M.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Luff, P. P.

P. P. Luff, M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films 6, 175–195 (1970).
[CrossRef]

Machorro, R.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1986).
[CrossRef]

Martin, D. H.

D. H. Martin, E. Puplett, “Polarized interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1970).
[CrossRef]

Mather, J. C.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Mencaraglia, F.

Meyer, S. S.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Morgan, R. L.

Moseley, S. H.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Muranova, G. A.

A. F. Perveev, G. A. Muranova, “Obtention of thin films of polyethylene by evaporation in vacuo,” Instrum. Exp. Tech. (USSR) 4, 1036–1037 (1969).

Murdock, T. L.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Naylor, D. A.

Ostrelich, M.

P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).

Palik, E. D.

E. D. Palik, A. Addamiano, “Zinc sulfide (ZnS),” in Ref. 17, pp. 597–619.

E. D. Palik, “Gallium arsenide (GaAs),” in Ref. 17, pp. 429–443.

Perry, C. H.

Perveev, A. F.

A. F. Perveev, G. A. Muranova, “Obtention of thin films of polyethylene by evaporation in vacuo,” Instrum. Exp. Tech. (USSR) 4, 1036–1037 (1969).

Pfeil, A.

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Philipp, H. R.

D. F. Edwards, H. R. Philipp, “Cubic carbon (diamond),” in Ref. 17, pp. 665–673.

Piller, H.

H. Piller, “Silicon (amorphous) (a-Si),” in Ref. 17, pp. 571–586.

O. J. Gembocki, H. Piller, “Indium phosphide (InP),” in Ref. 17, pp. 503–516.

Potter, R. F.

R. F. Potter, “Germanium (Ge),” in Ref. 17, pp. 465–478.

Pridatko, G. D.

G. D. Pridatko, A. V. Dement’ev, “Multilayer interference coatings on polymer materials,” Sov. J. Opt. Technol. 42, 467–469 (1975).

Puplett, E.

D. H. Martin, E. Puplett, “Polarized interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1970).
[CrossRef]

Regalado, L. E.

Rossi, E.

Rowell, N. L.

Santos, A. D.

P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).

Savvides, N.

S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.

Scheuerman, R. J.

R. J. Scheuerman, J. H. Beardsley, “Unsupported thin film beamsplitter,” Perkin-Elmer Tech. Rep. 9337 (Perkin-Elmer, Norwalk, 1968).

Schwartz, M. J.

M. J. Schwartz, “Solving design problems with pellicles,” Electro-Opt. Syst. Des.88–94 (Aug.1970).

Serviss, R. J.

R. J. Serviss, “Preliminary report on interference filters for the 20 to 1000 micron spectral region,” in Long-Wavelength Infrared, W. L. Wolfe, ed., Proc. SPIE 67, 76–80 (1975).

Shafer, R. A.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Shao, J.

Silverberg, R. F.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Siqueiros, J. M.

Smith, D. R.

Smith, F. W.

S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.

Smoot, G. F.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Spivack, M. A.

M. A. Spivack, “Parylene thin films for radiation applications,” Rev. Sci. Instrum. 41, 1614–1616 (1970).
[CrossRef]

Sullivan, B. T.

B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” Appl. Opt. (to be published).

Thowalt, M. L. W.

Traub, W. A.

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).

Varaprasad, P. L. H.

J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene (C2H4)n,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 957–987.

Waldorf, A. J.

Wang, E. A.

Ward, L.

L. Ward, “Zinc selenide (ZnSe), zinc telluride (ZnTe),” in Ref. 18, pp. 737–758.

Weiss, R.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

White, M.

P. P. Luff, M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films 6, 175–195 (1970).
[CrossRef]

White, R. H.

D. F. Edwards, R. H. White, “Gallium-antimonide (GaSb),” in Ref. 18, pp. 597–606.

Wilkinson, D. T.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Woollam, J. A.

S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.

Wright, E. L.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Young, E. F.

Appl. Opt.

E. V. Loewenstein, D. R. Smith, “Optical constants of far infrared materials. 1. Analysis of chanelled spectra and application to Mylar,” Appl. Opt. 12, 577–583 (1971).
[CrossRef]

C. H. Perry, R. Geick, E. F. Young, “Solid state studies by means of Fourier transform spectroscopy,” Appl. Opt. 5, 1171–1177 (1966).
[CrossRef] [PubMed]

A. L. Fymat, “Polarization effects in Fourier spectroscopy. I: coherency matrix representation,” Appl. Opt. 11, 160–173 (1972).
[CrossRef] [PubMed]

E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far infrared materials. 2. Crystalline solids,” Appl. Opt. 12, 398–406 (1973).
[CrossRef] [PubMed]

J. L. Deuzé, A. L. Fymat, “Instrumentation optimization in Fourier spectroscopy. 1: Far infrared beam splitters,” Appl. Opt. 13, 1807–1813 (1974).
[CrossRef] [PubMed]

D. R. Smith, E. V. Loewenstein, “Optical constants of far infrared materials. 3. Plastics,” Appl. Opt. 14, 1335 (1975).
[CrossRef] [PubMed]

D. R. Smith, E. V. Loewenstein, “Far-infrared thin-film beam splitters: calculated properties,” Appl. Opt. 14, 2473–2475 (1975).
[CrossRef] [PubMed]

D. A. Naylor, R. T. Boreiko, T. A. Clark, “Mylar beam-splitter efficiency in far infrared interferometers: angle of incidence and absorption effects,” Appl. Opt. 17, 1055–1058 (1978).
[CrossRef] [PubMed]

B. Carli, M. Carlotti, F. Mencaraglia, E. Rossi, “Far-infrared high-resolution Fourier transform spectrometer,” Appl. Opt. 26, 3818–3822 (1987).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. J. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
[CrossRef] [PubMed]

J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
[CrossRef] [PubMed]

N. L. Rowell, E. A. Wang, “A bilayer free-standing beam splitter for Fourier-transform infrared spectrometry,” Appl. Opt. 35, 2927–2933 (1996).
[CrossRef] [PubMed]

R. Machorro, L. E. Regalado, J. M. Siqueiros, “Optical properties of parylene and its use as substrate in beam splitters,” Appl. Opt. 30, 2778–2781 (1991).
[CrossRef] [PubMed]

A. L. Fymat, “Jones’s matrix representation of optical instruments. 2. Fourier interferometers (spectrometers and spectropolarimeters),” Appl. Opt. 10, 2711–2716 (1971).
[CrossRef] [PubMed]

D. Labrie, I. J. Booth, M. L. W. Thowalt, B. P. Clayman, “Use of polypropylene film for infrared cryogenic windows,” Appl. Opt. 25, 171–172 (1986).
[CrossRef] [PubMed]

Appl. Phys.

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Astrophys. J.

J. C. Mather, E. S. Cheng, R. E. Eplee, R. B. Isaacman, S. S. Meyer, R. A. Shafer, R. Weiss, E. L. Wright, C. L. Bennett, N. W. Boggess, E. Dwek, S. Gulkis, M. G. Hauser, M. Janssen, T. Kesall, P. M. Lubin, S. H. Moseley, T. L. Murdock, R. F. Silverberg, G. F. Smoot, D. T. Wilkinson, “A preliminary measurement of the cosmic microwave background spectrum by the COBE satellite,” Astrophys. J. 354, L37–L40 (1990).
[CrossRef]

Infrared Phys.

D. H. Martin, E. Puplett, “Polarized interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1970).
[CrossRef]

Instrum. Exp. Tech. (USSR)

A. F. Perveev, G. A. Muranova, “Obtention of thin films of polyethylene by evaporation in vacuo,” Instrum. Exp. Tech. (USSR) 4, 1036–1037 (1969).

J. Geophys. Res.

D. G. Johnson, K. W. Jucks, W. A. Traub, K. V. Chance, “Smithsonian stratospheric far-infrared spectrometer and data reduction system,” J. Geophys. Res. 100, 3091–3106 (1995).
[CrossRef]

J. Opt. Soc. Am.

Rev. Sci. Instrum.

M. A. Spivack, “Parylene thin films for radiation applications,” Rev. Sci. Instrum. 41, 1614–1616 (1970).
[CrossRef]

Semicond. Int.

R. Iscoff, “Pellicles-A means to increase die yield,” Semicond. Int. X, 95–108 (1982).

Sov. J. Opt. Technol.

G. D. Pridatko, A. V. Dement’ev, “Multilayer interference coatings on polymer materials,” Sov. J. Opt. Technol. 42, 467–469 (1975).

I. I. Foteva, “Double-beam interferometers, applicable to Fourier spectroscopy,” Sov. J. Opt. Technol. 42, 282–288 (1975).

Thin Solid Films

P. P. Luff, M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films 6, 175–195 (1970).
[CrossRef]

Other

W. A. Traub, K. V. Chance, D. G. Johnson, K. W. Jucks, “Stratospheric spectroscopy with the far-infrared spectrometer (FIRS-2): overview and recent results,” in Remote Sensing of Atmospheric Chemistry, J. L. McElroy, R. J. McNeal, eds., Proc. SPIE 1491, 298–307 (1991).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla.1985).

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Boston, 1991).

S. A. Alterovitz, N. Savvides, F. W. Smith, J. A. Woollam, “Amorphous hydrogenated “diamondlike” carbon films and arc-evaporated carbon films,” in Ref. 18, pp. 837–852.

E. D. Palik, A. Addamiano, “Zinc sulfide (ZnS),” in Ref. 17, pp. 597–619.

L. Ward, “Zinc selenide (ZnSe), zinc telluride (ZnTe),” in Ref. 18, pp. 737–758.

A. Borghesi, G. Guizzetti, “Graphite (C),” in Ref. 18, pp. 449–460.

D. F. Edwards, H. R. Philipp, “Cubic carbon (diamond),” in Ref. 17, pp. 665–673.

D. F. Edwards, “Silicon (Si),” in Ref. 17, pp. 547–569.

H. Piller, “Silicon (amorphous) (a-Si),” in Ref. 17, pp. 571–586.

O. J. Gembocki, H. Piller, “Indium phosphide (InP),” in Ref. 17, pp. 503–516.

E. D. Palik, “Gallium arsenide (GaAs),” in Ref. 17, pp. 429–443.

D. F. Edwards, R. H. White, “Gallium-antimonide (GaSb),” in Ref. 18, pp. 597–606.

R. F. Potter, “Germanium (Ge),” in Ref. 17, pp. 465–478.

B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” Appl. Opt. (to be published).

J. Ashok, P. L. H. Varaprasad, J. R. Birch, “Polyethylene (C2H4)n,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 957–987.

R. J. Scheuerman, J. H. Beardsley, “Unsupported thin film beamsplitter,” Perkin-Elmer Tech. Rep. 9337 (Perkin-Elmer, Norwalk, 1968).

K. Hancock, “Membrane optics,” in Proceedings, Electro-Optical Systems Design Conference (Industrial and Scientific Conference Management, Chicago, 1969), pp. 231–237.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1986).
[CrossRef]

N. L. Rowell, E. A. Wang, “Silicon-coated beamsplitter,” U.S. patent application08/352.026 (October1994).

Bomem Ltd., 450 St-Jean Baptiste, Quebec, Canada G2E 5S5.

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 42.1–42.130.

P. L. Heinrich, R. C. Bastien, A. D. Santos, M. Ostrelich, “Development of an all dielectric infrared beamsplitter operating in the 5 to 30 micron region,” NASA Rep. CR-703 (NASA, Washington, D.C., 1967).

“Ultrathin silicon,” in Photonic Spectra (Virginia Semiconductor Inc, Fredericksburg, Va., August1990), p. 160.

M. J. Schwartz, “Solving design problems with pellicles,” Electro-Opt. Syst. Des.88–94 (Aug.1970).

R. J. Serviss, “Preliminary report on interference filters for the 20 to 1000 micron spectral region,” in Long-Wavelength Infrared, W. L. Wolfe, ed., Proc. SPIE 67, 76–80 (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagrams of A, pellicle; B, solid substrate beam splitters.

Fig. 2
Fig. 2

Calculated normal-incidence reflectance R and efficiency E (= 4TR) of an uncoated pellicle at wavelengths corresponding to reflectance peaks, expressed as a function of refractive index.

Fig. 3
Fig. 3

Beam splitter consisting of an uncoated, nonabsorbing pellicle of index 1.73 of 12.0-μm metric thickness. A, calculated values of R, T, and E for normal incidence of radiation; B, refractive-index profile of the pellicle.

Fig. 4
Fig. 4

Beam splitter consisting of a nonabsorbing pellicle of index 1.73 coated with a single layer of refractive index 4.0. A, calculated values of R, T, and E; B, refractive-index profile of the system.

Fig. 5
Fig. 5

Beam splitter consisting of a nonabsorbing pellicle of index 1.51 coated with three layers. A, calculated values of R, T, and E; B, refractive-index profile of the system.

Fig. 6
Fig. 6

Beam splitter consisting of a nonabsorbing pellicle of index 1.51 coated with four layers. A, calculated values of R, T, and E. B, refractive-index profile of the system.

Fig. 7
Fig. 7

Calculated values of the normal-incidence reflectance R, transmittance T, and efficiency E of a nonabsorbing substrate with one perfect antireflection coating, expressed as a function of refractive index. The approximate refractive indices of polyethylene, ZnS, graphite, Si, and Ge are also indicated.

Fig. 8
Fig. 8

Beam splitter based on a nonabsorbing substrate of index 3.4 with no coating on the first side and an antireflection coating on the second side. A, calculated values of R, T, and E. For this illustration the effect of coherence between the two sides is ignored. Also shown in this diagram is the reflectance R 2 of the second surface. B, refractive-index profile of the coating on the second surface.

Fig. 9
Fig. 9

Effect of coherent interaction of radiation reflected from the two interfaces of the layer system depicted in Fig. 8. The metric thickness of the substrate is 0.5 mm. Note the greatly expanded frequency scale. The average efficiency is close to the incoherent efficiency curve, represented here by the heavy line.

Fig. 10
Fig. 10

Beam splitter based on a nonabsorbing substrate of index 4.0 coated on one side. A, calculated values of R, T, and E. B, refractive-index profile of the coating on side 2.

Fig. 11
Fig. 11

Beam splitter based on a nonabsorbing substrate of index 1.55 coated on one side. A, calculated values of R, T, and E; B, refractive-index profile of the coating on side 1.

Fig. 12
Fig. 12

Beam splitter based on a nonabsorbing substrate of index 2.5 coated on both sides. A, calculated values of R, T, and E. The effect of coherency between the surfaces is ignored, as in Fig. 8. B, refractive-index profiles of the coatings on sides 1 and 2.

Fig. 13
Fig. 13

Effect of finite extinction coefficients on the efficiency of the pellicle beam splitters depicted in Figs. 5 and 6 (solid curves). The materials with refractive indices 1.51, 1.80, and 4.00 were assumed to have the extinction coefficients cited in Table 1 for polyethylene, α-C:H, and Ge. The dotted curves correspond to systems made of absorption-free materials.

Fig. 14
Fig. 14

A, B, C, D, Effect of finite extinction coefficients on the efficiency of the systems depicted in Figs. 8, 10, 11, and 12, respectively. In these figures k f and k s represent the extinction coefficients of the films and the substrates, respectively, and the substrate thickness is 0.5 mm.

Fig. 15
Fig. 15

Effect of random errors in the thicknesses of the layers on the efficiency of the systems depicted in Figs. 6 and 8 (see text for details).

Fig. 16
Fig. 16

Performance of systems depicted in Figs. 6 and 8 that have been adjusted for use with radiation incident at 20°.

Tables (2)

Tables Icon

Table 1 Some Interesting Pellicle Materials

Tables Icon

Table 2 Some Materials with Interesting Transmission Properties in the IRa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E = 4 R T .
T = ( n 0 / n m ) T 1 T 2 [ 1 - ( R 1 R 2 ) 1 / 2 ] 2 + 4 ( R 1 R 2 ) 1 / 2 sin 2 ( ϕ 1 + ϕ 2 2 - 2 π n s d s λ ) .
0 R [ ( n s 2 - 1 ) / ( n s 2 + 1 ) ] 2 .
0 R 1.0
τ = exp ( - 2 π λ k s d s ) ,
T = T 1 T 2 τ 1 - R 1 R 2 τ 2 .
R = R 1 + T 1 2 R 2 τ 2 1 - R 1 R 2 τ 2 .
R = R 1 = ( n s - 1 n s + 1 ) 2 ,
T = 1 - R .

Metrics