Abstract

We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm−1.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Gebbie, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” Nature 178, 432–433 (1956).
    [CrossRef]
  2. J. Connes, “Spectroscopic studies using Fourier transformations,” Rev. Opt. (France) 40, 45–78 (1961).
  3. P. L. Richards, “High-resolution Fourier transform spectroscopy in the far-infrared,” J. Opt. Soc. Am. 54, 1474–1484 (1964).
    [CrossRef]
  4. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  5. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley-Interscience, New York, 1979).
  6. A. E. Martin, “Infrared interferometric spectrometers,” in Vibrational Spectra and Structure, J. R. Durig, ed. (Elsevier, Amsterdam, 1980), Vol. 8.
  7. M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
    [CrossRef]
  8. D. W. Vidrine, C. R. Anderson, “Silicon beam splitter,” U.S. patent4,632,553 (30Dec.1986).
  9. E. D. Palik, Handbook of Optical Constants I (Academic, Orlando, Fla., 1985).
  10. D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for near- and submillimeter spectra,” in Infrared and Millimeter Waves: Systems and Components, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, Chap. 2.
  11. M. J. Dignam, M. D. Baker, “Analysis of a polarizing Michelson interferometer for dual beam Fourier transform infrared, circular dichroism infrared, and reflectance ellipsometric infrared spectroscopies,” Appl. Spectrosc. 35, 186–193 (1981).
    [CrossRef]
  12. K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
    [CrossRef]
  13. D. K. Lambert, P. L. Richards, “Martin–Puplett interferometer: an analysis,” Appl. Opt. 17, 1595–1602 (1978).
    [CrossRef] [PubMed]
  14. H. Buijs, “Bomem DA3 based polarizing interferometer accessory,” Tech Note DA3-8701 (Bomem, Inc., 450, St-Jean-Baptiste ave, Québec, Canada G2E 5S5, 1987).
  15. B. Carli, M. Carlotti, F. Mencaraglia, E. Rossi, “Far-infrared high-resolution Fourier transform spectrometer,” Appl. Opt. 26, 3818–3822 (1987).
    [CrossRef] [PubMed]
  16. G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
    [CrossRef]
  17. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42, 806–810 (1952).
    [CrossRef]
  18. D. R. Smith, E. V. Loewenstein, “Optical constants of far infrared materials. 3: platics,” Appl. Opt. 14, 2473–2475 (1975).
    [CrossRef] [PubMed]
  19. J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
    [CrossRef] [PubMed]
  20. V. R. Costich, Study to Demonstrate a New Process to Produce Infrared Filters (Nemo Filters, Mountain View, Calif., 1990).
  21. T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).
  22. P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).
  23. N. L. Rowell, E. A. Wang, “Silicon coated Mylar beamsplitter,” U.S. patent08/352,026 (5Oct.1994).

1993 (1)

1992 (1)

M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
[CrossRef]

1987 (1)

1982 (1)

K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
[CrossRef]

1981 (1)

1978 (1)

1977 (1)

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

1976 (1)

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

1975 (1)

1970 (1)

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

1964 (1)

1961 (1)

J. Connes, “Spectroscopic studies using Fourier transformations,” Rev. Opt. (France) 40, 45–78 (1961).

1956 (1)

H. A. Gebbie, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” Nature 178, 432–433 (1956).
[CrossRef]

1952 (1)

Anderson, C. R.

D. W. Vidrine, C. R. Anderson, “Silicon beam splitter,” U.S. patent4,632,553 (30Dec.1986).

Ashley, E. J.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

Bahl, S. K.

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

Baker, M. D.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

Bennett, J. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

Buijs, H.

H. Buijs, “Bomem DA3 based polarizing interferometer accessory,” Tech Note DA3-8701 (Bomem, Inc., 450, St-Jean-Baptiste ave, Québec, Canada G2E 5S5, 1987).

Carli, B.

Carlotti, M.

Chamberlain, J.

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley-Interscience, New York, 1979).

Connes, J.

J. Connes, “Spectroscopic studies using Fourier transformations,” Rev. Opt. (France) 40, 45–78 (1961).

Costich, V. R.

V. R. Costich, Study to Demonstrate a New Process to Produce Infrared Filters (Nemo Filters, Mountain View, Calif., 1990).

Cuisenier, M.

M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
[CrossRef]

Dignam, M. J.

Dobrowolski, J. A.

Donovan, T. M.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

Epstein, L. I.

Gebbie, H. A.

H. A. Gebbie, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” Nature 178, 432–433 (1956).
[CrossRef]

Hendrickson, J. R.

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

Kampffmeyer, G.

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Kitade, A.

K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
[CrossRef]

Lambert, D. K.

Loewenstein, E. V.

Marten, A.

M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
[CrossRef]

Martin, A. E.

A. E. Martin, “Infrared interferometric spectrometers,” in Vibrational Spectra and Structure, J. R. Durig, ed. (Elsevier, Amsterdam, 1980), Vol. 8.

Martin, D. H.

D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for near- and submillimeter spectra,” in Infrared and Millimeter Waves: Systems and Components, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, Chap. 2.

Matsushita, T.

K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
[CrossRef]

Mencaraglia, F.

Mondellini, J.

M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants I (Academic, Orlando, Fla., 1985).

Pfeil, A.

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Richards, P. L.

Rossi, E.

Rowell, N. L.

N. L. Rowell, E. A. Wang, “Silicon coated Mylar beamsplitter,” U.S. patent08/352,026 (5Oct.1994).

Shao, J.

Smith, D. R.

Spicer, W. E.

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

Strom, U.

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

Taylor, P. C.

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

Vanasse, G. A.

H. A. Gebbie, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” Nature 178, 432–433 (1956).
[CrossRef]

Vidrine, D. W.

D. W. Vidrine, C. R. Anderson, “Silicon beam splitter,” U.S. patent4,632,553 (30Dec.1986).

Wang, E. A.

N. L. Rowell, E. A. Wang, “Silicon coated Mylar beamsplitter,” U.S. patent08/352,026 (5Oct.1994).

Yoshihara, K.

K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

G. Kampffmeyer, A. Pfeil, “Self-supporting thin-film beam splitter for far-infrared interferometers,” Appl. Phys. 14, 313–317 (1977).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. (Paris) (1)

M. Cuisenier, A. Marten, J. Mondellini, “Interféromètres de Fourier dans l’infrarouge lointain et le submillimétrique. É tude comparative de leurs performances en vue d’applications spatiales,” J. Opt. (Paris) 23, 179–198 (1992).
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

K. Yoshihara, A. Kitade, T. Matsushita, “A high-efficiency polarizing interferometer for far-infrared spectroscopy,” Jpn. J. Appl. Phys. 21, L206–L208 (1982).
[CrossRef]

Nature (1)

H. A. Gebbie, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” Nature 178, 432–433 (1956).
[CrossRef]

Phys. Rev. (2)

T. M. Donovan, W. E. Spicer, J. M. Bennett, E. J. Ashley, “Optical properties of amorphous germanium films,” Phys. Rev. B2, 397–413 (1970).

P. C. Taylor, U. Strom, J. R. Hendrickson, S. K. Bahl, “Infrared and microwave absorption in amorphous Ge,” Phys. Rev. B13, 1711–1719 (1976).

Rev. Opt. (France) (1)

J. Connes, “Spectroscopic studies using Fourier transformations,” Rev. Opt. (France) 40, 45–78 (1961).

Other (9)

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley-Interscience, New York, 1979).

A. E. Martin, “Infrared interferometric spectrometers,” in Vibrational Spectra and Structure, J. R. Durig, ed. (Elsevier, Amsterdam, 1980), Vol. 8.

D. W. Vidrine, C. R. Anderson, “Silicon beam splitter,” U.S. patent4,632,553 (30Dec.1986).

E. D. Palik, Handbook of Optical Constants I (Academic, Orlando, Fla., 1985).

D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for near- and submillimeter spectra,” in Infrared and Millimeter Waves: Systems and Components, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, Chap. 2.

H. Buijs, “Bomem DA3 based polarizing interferometer accessory,” Tech Note DA3-8701 (Bomem, Inc., 450, St-Jean-Baptiste ave, Québec, Canada G2E 5S5, 1987).

V. R. Costich, Study to Demonstrate a New Process to Produce Infrared Filters (Nemo Filters, Mountain View, Calif., 1990).

N. L. Rowell, E. A. Wang, “Silicon coated Mylar beamsplitter,” U.S. patent08/352,026 (5Oct.1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Frequency dependence of the predicted beam-splitter efficiencies from Eq. (3) for Mylar (n 1 = 1.72) films of various thicknesses.

Fig. 2
Fig. 2

Theoretical beam-splitter efficiency, plotted for variously thick Ge layers on a 6-μm-thick Mylar film. Both layers are assumed to be nonabsorbing and the radiation is incident at 30°.

Fig. 3
Fig. 3

Raw spectra taken with a DTGS detector for a bilayer beam splitter consisting of 1.8 μm of evaporated Ge on a 6-μm Mylar film, and Mylar beam splitters of 3 μm, 6 μm, and 12 μm.

Fig. 4
Fig. 4

Experimental and theoretical beam-splitter performance ratios from 50 to 550 cm−1 for 3-μm Mylar ratioed to the bilayer beam splitter.

Fig. 5
Fig. 5

Experimental and theoretical beam-splitter performance ratios for 6-μm Mylar ratioed to the bilayer beam splitter.

Fig. 6
Fig. 6

Experimental and theoretical beam-splitter performance ratios for 12-μm Mylar ratioed to the bilayer beam splitter.

Fig. 7
Fig. 7

Efficiency curve derived from measurements for the coated beam splitter (1.8 μm of Ge and 6 μm of Mylar) compared with theoretical curves for uncoated, nonabsorbing 3-, 6-, and 12-μm Mylar.

Tables (1)

Tables Icon

Table 1 Comparison of the Average Beam-Splitter Efficiency from 50 to 550 cm−1 for Mylar Beam Splitters and a Bilayer-Coated Beam Splitter

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = 2 R ( 1 - cos δ ) / ( 1 - 2 R cos δ + R 2 )
η = 2 R ( 1 - R ) ,
η = 4 R ( 1 - R ) 2 ( 1 - cos δ ) / ( 1 - 2 R cos δ + R 2 ) 2
[ E I H I ] = [ m 11 m 12 m 21 m 22 ] [ E T H T ] .
R = [ ( A 2 - D 2 + B 2 - C 2 ) 2 + 4 ( B D - C A ) 2 ] / [ ( A + D ) 2 + ( B + C ) 2 ] 2 ,

Metrics