Abstract

Digital array scanned interferometers (DASI) blend characteristics of a grating spectrometer and a two-beam interferometer for acquisition of hyperspectra. DASI’s posses field-widened capabilities that permit very high throughput. Aspects of DASI design, hyperspectra, and data processing methods are presented. In particular, we provide data showing that photon-noise-limited hyperspectra are achievable for DASI data.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Stroke, A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
    [CrossRef]
  2. K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
    [CrossRef]
  3. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986).
    [CrossRef]
  4. N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
    [CrossRef]
  5. W. H. Smith, “Digital array scanned interferometer,” U. S. Patent4,976,542 (11Dec.1990).
  6. W. H. Smith, W. V. Schempp, “Digital array scanned interferometers,” Exp. Astron. 1, 389–405 (1991).
    [CrossRef]
  7. F. D. Kahn, “The signal:noise ratio of a suggested spectral analyzer,” Astrophys. J. 129, 518–520 (1959).
    [CrossRef]
  8. J. Brault, “High resolution astronomy,” in Proceedings of the Fifteenth Advanced Course in Astronomy and Astrophysics, M. Huber, A. Benz, M. Mayor, eds. (Kitt Peak National Observatory, Tucson, Ariz., 1985).
  9. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
    [CrossRef]
  10. W. H. Smith, “Final report on PRIMIS, Pluto reflectance imaging interferometric sensor” (Washington University, St. Louis, Missouri, 1995).
  11. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  12. P. D. Hammer, D. L. Peterson, W. H. Smith, “Imaging interferometry for terrestrial remote sensing—Digital Array Scanned Interferometer instrument developments,” in Imaging Spectrometry, M. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE 2480, 153–164 (1995).

1991

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

1990

N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
[CrossRef]

1986

1967

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

1965

G. W. Stroke, A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

1959

F. D. Kahn, “The signal:noise ratio of a suggested spectral analyzer,” Astrophys. J. 129, 518–520 (1959).
[CrossRef]

1954

P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
[CrossRef]

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Brault, J.

J. Brault, “High resolution astronomy,” in Proceedings of the Fifteenth Advanced Course in Astronomy and Astrophysics, M. Huber, A. Benz, M. Mayor, eds. (Kitt Peak National Observatory, Tucson, Ariz., 1985).

Butcher, H. R.

N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
[CrossRef]

Douglas, N. G.

N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
[CrossRef]

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Hammer, P. D.

P. D. Hammer, D. L. Peterson, W. H. Smith, “Imaging interferometry for terrestrial remote sensing—Digital Array Scanned Interferometer instrument developments,” in Imaging Spectrometry, M. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE 2480, 153–164 (1995).

Jacquinot, P.

P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
[CrossRef]

Kahn, F. D.

F. D. Kahn, “The signal:noise ratio of a suggested spectral analyzer,” Astrophys. J. 129, 518–520 (1959).
[CrossRef]

Kawata, S.

Kitade, A.

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Melis, W. A.

N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
[CrossRef]

Minami, S.

Okamoto, T.

Peterson, D. L.

P. D. Hammer, D. L. Peterson, W. H. Smith, “Imaging interferometry for terrestrial remote sensing—Digital Array Scanned Interferometer instrument developments,” in Imaging Spectrometry, M. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE 2480, 153–164 (1995).

Schempp, W. V.

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

Smith, W. H.

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

W. H. Smith, “Digital array scanned interferometer,” U. S. Patent4,976,542 (11Dec.1990).

P. D. Hammer, D. L. Peterson, W. H. Smith, “Imaging interferometry for terrestrial remote sensing—Digital Array Scanned Interferometer instrument developments,” in Imaging Spectrometry, M. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE 2480, 153–164 (1995).

W. H. Smith, “Final report on PRIMIS, Pluto reflectance imaging interferometric sensor” (Washington University, St. Louis, Missouri, 1995).

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Yoshihara, K.

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Appl. Spectrosc.

Astron. Space Sci

N. G. Douglas, H. R. Butcher, W. A. Melis, “Fringhe, a stationary heterodyned interferometer,” Astron. Space Sci 171, 307–318 (1990).
[CrossRef]

Astrophys. J.

F. D. Kahn, “The signal:noise ratio of a suggested spectral analyzer,” Astrophys. J. 129, 518–520 (1959).
[CrossRef]

Exp. Astron.

W. H. Smith, W. V. Schempp, “Digital array scanned interferometers,” Exp. Astron. 1, 389–405 (1991).
[CrossRef]

J. Opt. Soc. Am.

P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry–Perot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
[CrossRef]

Jpn. J. Appl. Phys.

K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Phys. Lett.

G. W. Stroke, A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Other

W. H. Smith, “Digital array scanned interferometer,” U. S. Patent4,976,542 (11Dec.1990).

W. H. Smith, “Final report on PRIMIS, Pluto reflectance imaging interferometric sensor” (Washington University, St. Louis, Missouri, 1995).

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

P. D. Hammer, D. L. Peterson, W. H. Smith, “Imaging interferometry for terrestrial remote sensing—Digital Array Scanned Interferometer instrument developments,” in Imaging Spectrometry, M. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE 2480, 153–164 (1995).

J. Brault, “High resolution astronomy,” in Proceedings of the Fifteenth Advanced Course in Astronomy and Astrophysics, M. Huber, A. Benz, M. Mayor, eds. (Kitt Peak National Observatory, Tucson, Ariz., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic birefringent DASI illuminated with an off-axis telescope.

Fig. 2
Fig. 2

DASI interferogram of Orion around the Trapezium, showing the nebular emission.

Fig. 3
Fig. 3

Slitless DASI interferogram of a low-brightness, starless Trapezium region.

Fig. 4
Fig. 4

Spectrum of 100 averaged rows of the Trapezium nebulosity. The strong feature is Hα.

Fig. 5
Fig. 5

Spectrum from the slitless interferogram. The strong feature is Hα

Fig. 6
Fig. 6

DASI interferogram image for Jupiter (1.2–2.2 μm).

Fig. 7
Fig. 7

Trace of SWIR interferogram for Jupiter obtained with the DASI.

Fig. 8
Fig. 8

FFT of the Jupiter interferogram showing the strong CH4 features.

Fig. 9
Fig. 9

Jupiter center-of-disk interferogram obtained with a DASI at Mauna Kea Observatory. Vertical intensity changes are due to Jovain cloud structure.

Fig. 10
Fig. 10

Center-of-disk DASI interferogram for Jupiter in the visible–near-infrared region.

Fig. 11
Fig. 11

DASI fast Fourier transformed spectrum for Jupiter center of disk, visible–near-infrared region (right to left).

Fig. 12
Fig. 12

SN ratio achieved compared with theoretical SN ratio.

Fig. 13
Fig. 13

DASI hyperspectrum of agricultural fields and a NASA airstrip. Five spectral images are plotted of those measured between 4300 and 8900 cm−1.

Fig. 14
Fig. 14

Selected individual spectra from fields and the NASA tarmac.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( SN ) I = ( M / N ) 1 / 2 ,
( SN ) S / ( SN ) I = ( B t / B D ) ( N / 2 ) - 1 / 2 ,
SN λ = [ F ( λ ) δ λ ] 1 / 2 = [ M ( δ λ ) ] 1 / 2

Metrics