G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]
[PubMed]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[CrossRef]
[PubMed]

R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

G. Roosen, “La lévitation optique de sphères,” J. Can. Phys. 57, 1260–1279 (1979).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1965).

[CrossRef]

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).

[CrossRef]
[PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).

[CrossRef]

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]
[PubMed]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Do you know what a laser beam is?”, presented at the Seventh Workshop on Two-Phase Flows, Erlangen, Germany, April 11–14, 1994.

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]
[PubMed]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Do you know what a laser beam is?”, presented at the Seventh Workshop on Two-Phase Flows, Erlangen, Germany, April 11–14, 1994.

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1965).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1965).

[CrossRef]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]
[PubMed]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, G. Gréhan, “Do you know what a laser beam is?”, presented at the Seventh Workshop on Two-Phase Flows, Erlangen, Germany, April 11–14, 1994.

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

[CrossRef]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992).

[CrossRef]

G. Roosen, “La lévitation optique de sphères,” J. Can. Phys. 57, 1260–1279 (1979).

[CrossRef]

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).

[CrossRef]
[PubMed]

J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial wave representation of laser beams for use in light scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).

[CrossRef]
[PubMed]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).

[CrossRef]
[PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).

[CrossRef]
[PubMed]

T. C. B. Schut, G. Hesselink, B. G. Grooth, J. Greve, “Experimental and theoretical investigations on the validity of geometrical optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

G. Roosen, “La lévitation optique de sphères,” J. Can. Phys. 57, 1260–1279 (1979).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in the generalized Lorenz–Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072–2079 (1994).

[CrossRef]

J. A. Lock, G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).

[CrossRef]

K. F. Ren, G. Gréhan, G. Gouesbet, “Localized approximation of generalized Lorenz–Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. 19, 1177–1179 (1979).

[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1965).

[CrossRef]

G. Martinot-Lagarde, B. Pouligny, M. I. Angelova, G. Gréhan, G. Gouesbet, “Trapping and levitation of a dielectric sphere with off-centered Gaussian beams. II. GLMT analysis,” Pure Appl. Opt. 4, 571–585 (1995).

[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).

[CrossRef]
[PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Do you know what a laser beam is?”, presented at the Seventh Workshop on Two-Phase Flows, Erlangen, Germany, April 11–14, 1994.