Abstract

The influence of temperature on light transmission in the spectral range from 400 to 760 nm has been determined in a two-cell instrument constructed especially for this purpose. Light transmission was measured over a 1-m path length in both a photometric and a spectral mode in double-ion-exchanged fresh water and filtered seawater with a salinity of approximately 25‰. For both groups of samples the temperature-dependence coefficient of the absorption was found to be −0.00091 ± 0.00006 m−1 K−1 in the range from 400 to 550 nm, in contrast to earlier findings. Reproducible signals could be observed only when the samples were left undisturbed for long periods of time between shifts in temperature. The temperature was scanned in alternating directions between 6 and 30 °C in steps of ±2 °C. The time for recording a set of data was between 2 and 3 weeks. Finally, the temperature dependences of the absorption spectra were recorded in the range 400 to 760 nm. These measurements are only partially in agreement with earlier measurements.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Sauberer, F. Ruttner, Die Strahlungsverhältnisse der Binnenwässer (Akademische Verlagsgesellschaft, Leipzig, 1941).
  2. J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  3. N. K. Højerslev, I. Trabjerg, “A new perspective for remote measurements of plankton pigments and water quality,” Rep. no. 51 (Københavns Universitet, Geofysisk Institut, København, Denmark, 1990).
  4. H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).
  5. W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 597–604 (1994).
  6. J. R. Collins, “A new infra-red absorption band of liquid water at 2.52 μ,” Phys. Rev. 55, 470–472 (1939).
    [CrossRef]
  7. J. R. Curcio, C. C. Petty, “The near-infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  8. E. Ganz, “Über das Absorptionsspektrum von flüssigem Wasser zwischen 2.5 μ und 6.5 μ,” Ann. Phys. 5, 445–457 (1937).
    [CrossRef]
  9. H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wiscon. Acad. Sci. Arts Lett. 31, 1–154 (1938).
  10. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portion of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
    [CrossRef]
  11. W. S. Pegau, College of Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon 97333 (personal communication, December1995).
  12. N. K. Højerslev, “Optical properties of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 383–462.
  13. S. A. Sullivan, “Experimental study of the absorption in destilled water, artificial sea water, and heavy water in the visible region of the spectrum,” J. Opt. Soc. Am. 53, 962–968 (1963).
    [CrossRef]
  14. G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
    [CrossRef]
  15. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 38, 188–192 (1977).
  16. G. Siedler, H. Peters, “Physical properties (general) of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 233–264.

1993 (1)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portion of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 38, 188–192 (1977).

1963 (1)

1951 (1)

1939 (2)

J. R. Collins, “A new infra-red absorption band of liquid water at 2.52 μ,” Phys. Rev. 55, 470–472 (1939).
[CrossRef]

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

1938 (1)

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wiscon. Acad. Sci. Arts Lett. 31, 1–154 (1938).

1937 (1)

E. Ganz, “Über das Absorptionsspektrum von flüssigem Wasser zwischen 2.5 μ und 6.5 μ,” Ann. Phys. 5, 445–457 (1937).
[CrossRef]

1925 (1)

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Birge, E. A.

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wiscon. Acad. Sci. Arts Lett. 31, 1–154 (1938).

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).

Clarke, G. L.

Collins, J. R.

J. R. Collins, “A new infra-red absorption band of liquid water at 2.52 μ,” Phys. Rev. 55, 470–472 (1939).
[CrossRef]

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Curcio, J. R.

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).

Ganz, E.

E. Ganz, “Über das Absorptionsspektrum von flüssigem Wasser zwischen 2.5 μ und 6.5 μ,” Ann. Phys. 5, 445–457 (1937).
[CrossRef]

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).

Højerslev, N. K.

N. K. Højerslev, I. Trabjerg, “A new perspective for remote measurements of plankton pigments and water quality,” Rep. no. 51 (Københavns Universitet, Geofysisk Institut, København, Denmark, 1990).

N. K. Højerslev, “Optical properties of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 383–462.

James, H. R.

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wiscon. Acad. Sci. Arts Lett. 31, 1–154 (1938).

Morel, A.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 38, 188–192 (1977).

Pegau, W. S.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portion of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 597–604 (1994).

W. S. Pegau, College of Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon 97333 (personal communication, December1995).

Peters, H.

G. Siedler, H. Peters, “Physical properties (general) of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 233–264.

Petty, C. C.

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 38, 188–192 (1977).

Ruttner, F.

F. Sauberer, F. Ruttner, Die Strahlungsverhältnisse der Binnenwässer (Akademische Verlagsgesellschaft, Leipzig, 1941).

Sauberer, F.

F. Sauberer, F. Ruttner, Die Strahlungsverhältnisse der Binnenwässer (Akademische Verlagsgesellschaft, Leipzig, 1941).

Siedler, G.

G. Siedler, H. Peters, “Physical properties (general) of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 233–264.

Sullivan, S. A.

Trabjerg, I.

N. K. Højerslev, I. Trabjerg, “A new perspective for remote measurements of plankton pigments and water quality,” Rep. no. 51 (Københavns Universitet, Geofysisk Institut, København, Denmark, 1990).

Zaneveld, J. R. V.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portion of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 597–604 (1994).

Ann. Phys. (1)

E. Ganz, “Über das Absorptionsspektrum von flüssigem Wasser zwischen 2.5 μ und 6.5 μ,” Ann. Phys. 5, 445–457 (1937).
[CrossRef]

J. Opt. Soc. Am. (3)

Limnol. Oceanogr. (2)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portion of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 38, 188–192 (1977).

Phys. Rev. (2)

J. R. Collins, “A new infra-red absorption band of liquid water at 2.52 μ,” Phys. Rev. 55, 470–472 (1939).
[CrossRef]

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Trans. Wiscon. Acad. Sci. Arts Lett. (1)

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wiscon. Acad. Sci. Arts Lett. 31, 1–154 (1938).

Other (7)

F. Sauberer, F. Ruttner, Die Strahlungsverhältnisse der Binnenwässer (Akademische Verlagsgesellschaft, Leipzig, 1941).

N. K. Højerslev, I. Trabjerg, “A new perspective for remote measurements of plankton pigments and water quality,” Rep. no. 51 (Københavns Universitet, Geofysisk Institut, København, Denmark, 1990).

H. Buiteveld, J. H. M. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 174–183 (1994).

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE 2258, 597–604 (1994).

G. Siedler, H. Peters, “Physical properties (general) of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 233–264.

W. S. Pegau, College of Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon 97333 (personal communication, December1995).

N. K. Højerslev, “Optical properties of sea water,” in Oceanography, J. Sündermann, ed., Vol. 3 of Landolt Börnstein, New Series, Group V (Springer-Verlag, Berlin, 1986), pp. 383–462.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical layout: D, detector housing or fiber-bundle termination; L1–L3, lenses; M’s, mirrors; C, shutter to select the reference or main beam; P, pinhole; B, shutter for recording of the dark signal; S, quartz iodine lamp.

Fig. 2
Fig. 2

Normalized spectral response of the source and detector in the photometer mode. The light source is assumed to be a blackbody of 3000 K, from which the spectrum of the number of photons per time unit and wavelength unit is multiplied by the transmission spectrum of the optical filter and the photomultiplier sensitivity (S − 4).

Fig. 3
Fig. 3

Construction of a cell: S, supports. The dotted volume is thermostat water. For details see Fig. 4, below.

Fig. 4
Fig. 4

End part of the cell: A1, A2, O-rings; B, spring; C1, C2, clear plastic windows; D1, D2, volumes with nitrogen gas; E, cell window; F, thermostat water; G, sample.

Fig. 5
Fig. 5

Plots of the value of ln(I r I d /I s I d ) as function of the temperature for light of the spectral distribution shown in Fig. 2. I r is the detector current of the reference beam, I s is that of the sample beam, and I d is that of the dark signal. The detector light flux is proportional to II d , where I stands for I s or I r . The arrows show the directions of the temperature changes for the first two scans. The stabilization time between temperature changes was 1 h.

Fig. 6
Fig. 6

Spectral distribution of the temperature dependence of the absorbance as defined in Fig. 5. The spectrum obtained at 18 °C was subtracted from the other ones. Furthermore, the baselines were corrected to be consistent with the values obtained in the photometer mode. The curves are recorded at 30, 26, 10, and 6 °C. The 30 °C and 26 °C spectra each have maxima at 600 nm, 660 nm, and 740 nm. The other two curves have minima at the same wavelengths. The spectral range below 550 nm is omitted.

Tables (1)

Tables Icon

Table 1 Temperature Coefficient of the Absorbance of Water at Four Wavelengths in the Red and Near-Infrared Range

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d R / d T = 8 ( n w d n g / d T - n g d n w / d T ) × ( n g - n w ) ( n g + n w ) - 3 .
d b w , T / d T = M ( T - T r ) λ - 4 .
d c p / d T = 12 c p m ( d m / d T ) / [ ( m 2 - 1 ) ( m 2 + 2 ) ] 2 c p ( d m / d T ) / ( m - 1 ) = 2 c p ( d n p / d T - m d n w / d T ) / [ n w ( m - 1 ) ] .

Metrics