Abstract

Atmospheric emission measurements with the cryogenic airborne Michelson Interferometer for Passive Atmospheric Sounding revealed strongly disturbed phase and magnitude spectra. They were corrected with the double-differencing method: The phase information implied in the line structure of atmospheric spectra is used to specify a phase shift with respect to an instrumental phase spectrum, which was determined once from calibration measurements with the differencing method of Revercomb et al. [Appl. Opt. 27, 3210 (1988)].

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  2. Ch. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
    [CrossRef] [PubMed]
  3. T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.
  4. H. Fischer, “Remote sensing of atmospheric trace constituents using Fourier transform spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 306–314 (1992).
    [CrossRef]
  5. M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meßkampagnen 1991/92 und 1992/93,” Technical Report KfK 5438 (Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, 1994), pp. 21–36.

1993 (1)

1992 (1)

H. Fischer, “Remote sensing of atmospheric trace constituents using Fourier transform spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 306–314 (1992).
[CrossRef]

1988 (1)

Blom, C. E.

Ch. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
[CrossRef] [PubMed]

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Buijs, H.

Fergg, F.

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Fischer, H.

H. Fischer, “Remote sensing of atmospheric trace constituents using Fourier transform spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 306–314 (1992).
[CrossRef]

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Gulde, T.

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Höpfner, M.

Ch. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
[CrossRef] [PubMed]

M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meßkampagnen 1991/92 und 1992/93,” Technical Report KfK 5438 (Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, 1994), pp. 21–36.

Howell, H. B.

LaPorte, D. D.

Piesch, Ch.

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Revercomb, H. E.

Smith, W. L.

Sromovsky, L. A.

Weddigen, Ch.

Wildgruber, G.

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Appl. Opt. (2)

Ber. Bunsenges. Phys. Chem. (1)

H. Fischer, “Remote sensing of atmospheric trace constituents using Fourier transform spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 306–314 (1992).
[CrossRef]

Other (2)

M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meßkampagnen 1991/92 und 1992/93,” Technical Report KfK 5438 (Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, 1994), pp. 21–36.

T. Gulde, Ch. Piesch, C. E. Blom, H. Fischer, F. Fergg, G. Wildgruber, “The airborne MIPAS infrared emission experiment,” in Proceedings of the First International Airborne Remote Sensing Conference and Exhibition (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1994), Vol. II, pp. 301–311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Vectorial presentation of the complex Fourier transform I(σ) of two-sided interferograms and its components for a fixed wave number σ. I(σ) is decomposed into the real component I r (σ) of interest and the imaginary component I bs(σ) of thermal beam-splitter emission (BSE). Φ(σ), Φ e (σ), and Φ m (σ) are the differential, instrumental, and magnitude phases, respectively, and T 1 and T 2 are the blackbody temperatures.

Fig. 2
Fig. 2

In-flight atmospheric emission spectrum taken with the MIPAS in December 1992 where (a) is the magnitude I m (σ) and (b) is the phase angle Φ m (σ) of the complex Fourier transform I(σ) of a two-sided interferogram. In (b), the instrumental phase Φ e (σ) deduced from two calibration spectra measured 2 h earlier is also shown.

Fig. 3
Fig. 3

Same data as in Fig. 2, but phase corrected with the double-differencing (DD) method: (a) real part I r (σ), which is mainly due to atmospheric emission; (b) imaginary part I bs(σ), which is due to BSE in comparison with the spectrum I r (σ; 200 K) of a blackbody at T = 200 K; (c) differential phase Φ(σ) deduced from Φ e (σ) [the same as in Fig. 2(b)] by means of Eq. (4) with the distribution Φ j , Eq. (2), shown as a scatter plot for w j ≥ 0.2 (in relative units squared).

Fig. 4
Fig. 4

Spectral region between 778 and 784 cm−1, which is used for remote sensing of the stratosphere reservoir gas ClONO2. I r (σ) in (a), I bs(σ) in (b), and ϕ(σ) and ϕ e (σ) in (c) are the same as in Fig. 3. The dominant line structure in (a) is due to CO2 and O3. The magnitude spectrum I m (σ) in Fig. 2(a) is shown for comparison.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Φ e ( σ ) = arg [ I ( σ ; T 1 ) - I ( σ ; T 2 ) ]
Φ j = arg [ I ( σ j + 1 ) - I ( σ j - 1 ) ] ,
w j = { am [ I ( σ j + 1 ) - I ( σ j - 1 ) ] } 2 .
Φ ( σ ) = Φ e ( σ ) + c 1 + c 2 ( σ - σ ¯ )
j [ Φ ( σ j ) - Φ j ] 2 w j
I ( σ ) exp [ - i Φ ( σ ) ] = I r ( σ ) + i I bs ( σ ) .
Δ I r + i Δ I bs = I bs ( σ ) Δ Φ - i I r ( σ ) Δ Φ .
Δ Φ = r ( σ ; 0 ) i ( σ ; 0 ) ¯ / [ r ( σ ; 0 ) 2 ¯ - i ( σ ; 0 ) 2 ¯ ] ± [ r ( σ ; Δ Φ ) 2 i ( σ ; Δ Φ ) 2 ¯ / N 0 ] 1 / 2 / [ r ( σ ; Δ Φ ) 2 ¯ - i ( σ ; Δ Φ ) 2 ¯ ] .
r ( σ ; Δ Φ ) = [ I r ( σ ) + Δ Φ I b s ( σ ) ] [ 1 - f ( σ - σ ¯ ) ] - g 1 - g 2 ( σ - σ ¯ ) ,
i ( σ ; Δ Φ ) = [ I b s ( σ ) - Δ Φ I r ( σ ) ] [ 1 - f ( σ - σ ¯ ) ] - g 3 .
Δ Φ = - ( 9.1 ± 7.0 ) × 10 - 3

Metrics