Abstract

The contribution of multiple scattering to a spaceborne lidar return from clear molecular atmosphere obscured by transparent upper-level crystal clouds is assessed by the use of the variance-reduction Monte Carlo technique. High anisotropy of scattering in the forward direction by polydispersions of ice crystals is the basis of a significant effect of multiple scattering for small values of the lidar receiver field of view. Because of scattering by large nonspherical crystal particles, the lidar signal backscattered from the molecular atmosphere under the cloud increases significantly compared with the single-scattering return. The ratio of the multiple-to-single-scattering contributions from the clear atmosphere hidden by the clouds is greater than from the crystal clouds themselves, and it is proportional to the values of cloud optical thickness.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Lynch, “Subvisual cirrus: what it is and where you find it,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, D. K. Lynch, ed., Proc. SPIE 1934, 264–274 (1993).
  2. A. S. Jursa, ed., Handbook of Geophysics and the Space Environment (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1987).
  3. D. M. Winker, P. H. McCormick, “Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE),” in Lidar Techniques for Remote Sensing, Ch. Werner, ed., Proc. SPIE 2310, 98–105 (1994).
  4. F. Herbert, “The ICAO Standard Atmosphere,” in Landold Bornstein: Vol. 4. Meteorology, G. Fisher, ed. (Springer-Verlag, Berlin, 1987), pp. 134–139.
  5. E. M. Feigelson, ed., Radiation Properties of the Cirrus Clouds (Nauka, Moscow, 1989).
  6. C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
    [CrossRef]
  7. K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling (Oxford University, New York, 1992).
  8. D. Deirmendijian, “Sattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187–196 (1964).
    [CrossRef]
  9. A. V. Starkov, I. A. Mashnina, “Monte Carlo variance reduction method for polarized radiation transport simulations in thick medium,” in Proceedings of the Fifth International Workshop on Multiple Scattering Lidar Experiments (Drexel University, Philadelphia, 1991), pp. 255–269.
  10. L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
    [CrossRef]

1995 (1)

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

1981 (1)

C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

1964 (1)

Benayahu, Y.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Bissonnette, L. R.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Bruscaglioni, P.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Cohen, A.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Deirmendijian, D.

Egert, S.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Flesia, C.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Herbert, F.

F. Herbert, “The ICAO Standard Atmosphere,” in Landold Bornstein: Vol. 4. Meteorology, G. Fisher, ed. (Springer-Verlag, Berlin, 1987), pp. 134–139.

Ismaelli, A.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Katsev, I. L.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Kleiman, M.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Liou, K. N.

K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling (Oxford University, New York, 1992).

Lynch, D. K.

D. K. Lynch, “Subvisual cirrus: what it is and where you find it,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, D. K. Lynch, ed., Proc. SPIE 1934, 264–274 (1993).

Mashnina, I. A.

A. V. Starkov, I. A. Mashnina, “Monte Carlo variance reduction method for polarized radiation transport simulations in thick medium,” in Proceedings of the Fifth International Workshop on Multiple Scattering Lidar Experiments (Drexel University, Philadelphia, 1991), pp. 255–269.

McCormick, P. H.

D. M. Winker, P. H. McCormick, “Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE),” in Lidar Techniques for Remote Sensing, Ch. Werner, ed., Proc. SPIE 2310, 98–105 (1994).

Noormohammadian, M.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Oppel, U. G.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

Polonsky, I. N.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Schwendimann, P.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Starkov, A. V.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

A. V. Starkov, I. A. Mashnina, “Monte Carlo variance reduction method for polarized radiation transport simulations in thick medium,” in Proceedings of the Fifth International Workshop on Multiple Scattering Lidar Experiments (Drexel University, Philadelphia, 1991), pp. 255–269.

Winker, D. M.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

D. M. Winker, P. H. McCormick, “Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE),” in Lidar Techniques for Remote Sensing, Ch. Werner, ed., Proc. SPIE 2310, 98–105 (1994).

Zaccanti, G.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Zege, E. P.

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, M. Kleiman, S. Egert, C. Flesia, P. Schwendimann, A. V. Starkov, M. Noormohammadian, U. G. Oppel, D. M. Winker, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995).
[CrossRef]

J. Atmos. Sci. (1)

C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981).
[CrossRef]

Other (7)

K. N. Liou, Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling (Oxford University, New York, 1992).

A. V. Starkov, I. A. Mashnina, “Monte Carlo variance reduction method for polarized radiation transport simulations in thick medium,” in Proceedings of the Fifth International Workshop on Multiple Scattering Lidar Experiments (Drexel University, Philadelphia, 1991), pp. 255–269.

D. K. Lynch, “Subvisual cirrus: what it is and where you find it,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere, D. K. Lynch, ed., Proc. SPIE 1934, 264–274 (1993).

A. S. Jursa, ed., Handbook of Geophysics and the Space Environment (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1987).

D. M. Winker, P. H. McCormick, “Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE),” in Lidar Techniques for Remote Sensing, Ch. Werner, ed., Proc. SPIE 2310, 98–105 (1994).

F. Herbert, “The ICAO Standard Atmosphere,” in Landold Bornstein: Vol. 4. Meteorology, G. Fisher, ed. (Springer-Verlag, Berlin, 1987), pp. 134–139.

E. M. Feigelson, ed., Radiation Properties of the Cirrus Clouds (Nauka, Moscow, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Phase functions of the ice crystal polydispersions, Deirmendjian C1 cloud water drops, and Rayleigh scatterers for small scattering angles. 1, Rayleigh scatterers; 2, C1 cloud water drops; 3, ice crystal polydispersion of the cirrus upper layer; 4, ice crystal polydispersion of the cirrus lower layer.

Fig. 2
Fig. 2

Calculated ratios of the MSS contributions to the lidar return for molecular atmosphere and for clear atmosphere in the presence of two-layered cirrus cloud system. The lower and upper layers are situated at heights from 10 to 11 km and from 11.5 to 12 km, respectively. The locations of the cirrus layers are indicated by the dashed lines. The lidar is at a height of 800 km and is nadir directed. The receiver FOV is 3 mrad. 1, ratio for pure atmosphere; 2, ratio for the atmosphere in the presence of the cirrus cloud system of total optical depth τ = 0.125; 3, ratio for the atmosphere in presence of the cirrus cloud system of total optical depth τ = 0.25.

Fig. 3
Fig. 3

Same as Fig. 2, but for a receiver FOV of 1 mrad.

Fig. 4
Fig. 4

Calculated ratios of the MSS contributions to the lidar return for molecular atmosphere and for clear atmosphere in the presence of two-layered cirrus cloud system. The lower and upper layers are situated at heights from 10 to 11 km and from 11.5 to 12 km, respectively. The lidar is at a height of 800 km and is nadir directed. The receiver FOV is 3 mrad. 1, ratio for pure atmosphere; 2, ratio for the atmosphere in the presence of the cirrus cloud system of total optical depth τ = 0.0275; 3, ratio for the atmosphere in presence of the cirrus cloud system of total optical depth τ = 0.055.

Fig. 5
Fig. 5

Same as Fig. 4 but for a receiver FOV of 1 mrad.

Metrics