Abstract

A single-shot autocorrelator based on the two-photon excited fluorescence of BaF2 in the visible region at 400 nm has been developed for ultrashort KrF laser pulses at 248 nm. Operation in the visible region offers simplification in the required optical components as compared with previously reported systems, which used ultraviolet fluorescence emission. The fluorescence intensity is also used to measure the two-photon absorption coefficient of BaF2, yielding a value of β = 1.3 ± 0.4 × 10−10 cm/W.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
    [Crossref]
  2. S. Szatmari, F. P. Schafer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
    [Crossref]
  3. H. E. Rowe, T. Li, “Theory of two-photon measurement of laser output,” IEEE J. Quantum Electron. QE-6, 49–67 (1970).
    [Crossref]
  4. N. Sarukura, M. Watanabe, A. Endoh, S. Watanabe, “Single-shot measurement of subpicosecond KrF pulse width by three-photon fluorescence of the XeF visible transition,” Opt. Lett. 13, 996–998 (1988).
    [Crossref] [PubMed]
  5. A. Tunnermann, H. Eichmann, R. Henking, K. Mossavi, B. Wellegehausen, “Single-shot autocorrelator for KrF subpicosecond pulses based on two-photon fluorescence of cadmium vapor at λ = 508 nm,” Opt. Lett. 16, 402–404 (1991).
    [Crossref] [PubMed]
  6. M. H. R. Hutchinson, I. A. McIntyre, G. N. Gibson, C. K. Rhodes, “Measurement of 248-nm, subpicosecond pulse durations by two-photon fluorescence of xenon excimers,” Opt. Lett. 12, 102–104 (1987).
    [Crossref] [PubMed]
  7. S. P. Le Blanc, G. Szabo, R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16, 1508–1510 (1991).
    [Crossref] [PubMed]
  8. K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
    [Crossref]
  9. J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
    [Crossref]
  10. R. T. Williams, M. N. Kabler, “Time-resolved spectroscopy of self trapped excitons in fluorite crystals,” Phys. Rev. B 14, 725–740 (1976).
    [Crossref]
  11. R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
    [Crossref]
  12. K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
    [Crossref]
  13. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988).
    [Crossref] [PubMed]
  14. P. Simon, H. Gerhardt, S. Szatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
    [Crossref] [PubMed]
  15. J. N. Broughton, R. Fedosejevs, “X-ray generation from 50-mJ, 120-ps KrF laser-produced plasmas,” J. Appl. Phys. 71, 1153–1162 (1992); J. Broughton, “keV x-ray generation from 50 mJ picosecond KrF laser pulses,” Ph.D. dissertation (University of Alberta, Edmonton, Canada, 1992).
    [Crossref]
  16. J. I. Dadap, G. B. Focht, D. H. Reitze, M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
    [Crossref] [PubMed]
  17. H. Sakai, K. Miyazaki, G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 9, 2015–2018 (1992).
    [Crossref]

1994 (1)

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

1992 (2)

J. N. Broughton, R. Fedosejevs, “X-ray generation from 50-mJ, 120-ps KrF laser-produced plasmas,” J. Appl. Phys. 71, 1153–1162 (1992); J. Broughton, “keV x-ray generation from 50 mJ picosecond KrF laser pulses,” Ph.D. dissertation (University of Alberta, Edmonton, Canada, 1992).
[Crossref]

H. Sakai, K. Miyazaki, G. U. Kim, “Measurement of subpicosecond ultraviolet pulse widths by using the high-order nonlinear processes in a supersonic gas jet,” J. Opt. Soc. Am. B 9, 2015–2018 (1992).
[Crossref]

1991 (3)

1990 (1)

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[Crossref]

1989 (1)

1988 (3)

1987 (1)

1978 (1)

R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
[Crossref]

1976 (1)

R. T. Williams, M. N. Kabler, “Time-resolved spectroscopy of self trapped excitons in fluorite crystals,” Phys. Rev. B 14, 725–740 (1976).
[Crossref]

1970 (2)

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

H. E. Rowe, T. Li, “Theory of two-photon measurement of laser output,” IEEE J. Quantum Electron. QE-6, 49–67 (1970).
[Crossref]

1967 (1)

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

Beaumont, J. H.

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

Bradford, J. N.

R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
[Crossref]

Broughton, J. N.

J. N. Broughton, R. Fedosejevs, “X-ray generation from 50-mJ, 120-ps KrF laser-produced plasmas,” J. Appl. Phys. 71, 1153–1162 (1992); J. Broughton, “keV x-ray generation from 50 mJ picosecond KrF laser pulses,” Ph.D. dissertation (University of Alberta, Edmonton, Canada, 1992).
[Crossref]

Dadap, J. I.

Downer, M. C.

Eichmann, H.

Endoh, A.

Faust, W. L.

R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
[Crossref]

Fedosejevs, R.

J. N. Broughton, R. Fedosejevs, “X-ray generation from 50-mJ, 120-ps KrF laser-produced plasmas,” J. Appl. Phys. 71, 1153–1162 (1992); J. Broughton, “keV x-ray generation from 50 mJ picosecond KrF laser pulses,” Ph.D. dissertation (University of Alberta, Edmonton, Canada, 1992).
[Crossref]

Focht, G. B.

Gerhardt, H.

Gibson, G. N.

Gibson, R. B.

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

Hata, K.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[Crossref]

Hayes, W.

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

Henking, R.

Hooker, C. J.

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

Hutchinson, M. H. R.

Kabler, M. N.

R. T. Williams, M. N. Kabler, “Time-resolved spectroscopy of self trapped excitons in fluorite crystals,” Phys. Rev. B 14, 725–740 (1976).
[Crossref]

Kim, G. U.

Kirk, D. L.

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

Le Blanc, S. P.

Li, T.

H. E. Rowe, T. Li, “Theory of two-photon measurement of laser output,” IEEE J. Quantum Electron. QE-6, 49–67 (1970).
[Crossref]

Lister, J. M. D.

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

McIntyre, I. A.

Miyazaki, K.

Mossavi, K.

Osvay, K.

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

Reitze, D. H.

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

Rhodes, C. K.

Roberts, J. P.

Ross, I. N.

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

Rowe, H. E.

H. E. Rowe, T. Li, “Theory of two-photon measurement of laser output,” IEEE J. Quantum Electron. QE-6, 49–67 (1970).
[Crossref]

Sakai, H.

Sarukura, N.

Sauerbrey, R.

Schafer, F. P.

S. Szatmari, F. P. Schafer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[Crossref]

Shapiro, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

Simon, P.

Summers, G. P.

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

Szabo, G.

Szatmari, S.

P. Simon, H. Gerhardt, S. Szatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
[Crossref] [PubMed]

S. Szatmari, F. P. Schafer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[Crossref]

Taylor, A. J.

Tunnermann, A.

Watanabe, M.

Watanabe, S.

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

Wellegehausen, B.

Williams, R. T.

R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
[Crossref]

R. T. Williams, M. N. Kabler, “Time-resolved spectroscopy of self trapped excitons in fluorite crystals,” Phys. Rev. B 14, 725–740 (1976).
[Crossref]

Appl. Phys. B (2)

K. Osvay, I. N. Ross, C. J. Hooker, J. M. D. Lister, “Laser-excited nonlinear properties of BaF2 and its application in a single-shot spatially insensitive autocorrelator,” Appl. Phys. B 59, 361–365 (1994).
[Crossref]

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[Crossref]

Appl. Phys. Lett. (1)

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967); J. R. Klauder, M. A. Duguay, J. A. Giordmaine, S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968).
[Crossref]

IEEE J. Quantum Electron. (1)

H. E. Rowe, T. Li, “Theory of two-photon measurement of laser output,” IEEE J. Quantum Electron. QE-6, 49–67 (1970).
[Crossref]

J. Appl. Phys. (1)

J. N. Broughton, R. Fedosejevs, “X-ray generation from 50-mJ, 120-ps KrF laser-produced plasmas,” J. Appl. Phys. 71, 1153–1162 (1992); J. Broughton, “keV x-ray generation from 50 mJ picosecond KrF laser pulses,” Ph.D. dissertation (University of Alberta, Edmonton, Canada, 1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Szatmari, F. P. Schafer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68, 196–202 (1988).
[Crossref]

Opt. Lett. (7)

Phys. Rev. B (2)

R. T. Williams, M. N. Kabler, “Time-resolved spectroscopy of self trapped excitons in fluorite crystals,” Phys. Rev. B 14, 725–740 (1976).
[Crossref]

R. T. Williams, J. N. Bradford, W. L. Faust, “Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, Kcl, and NaBr,” Phys. Rev. B 18, 7038–7057 (1978).
[Crossref]

Proc. Roy. Soc. London Ser. A (1)

J. H. Beaumont, W. Hayes, D. L. Kirk, G. P. Summers, “An investigation of trapped holes and trapped excitons in alkaline earth fluorides,” Proc. Roy. Soc. London Ser. A 315, 69–97 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured spectrum of two-photon excited fluorescence (TPEF) from BaF2.

Fig. 2
Fig. 2

Dependence of the BaF2 fluorescence at 400 nm on the exciting laser intensity. The solid line is a least-squares best fit with a slope of 1.98 ± 0.05.

Fig. 3
Fig. 3

Layout of the autocorrelator used for two-photon-pulse-width measurements of KrF laser pulses. B.S.’s, beam splitters; OMA, optical multichannel analyzer.

Fig. 4
Fig. 4

Oscilloscope display of a measured autocorrelation trace. The measured full width of the fluorescence signal is 1.2 ps, yielding a pulse width of 850 fs, assuming a Gaussian pulse shape.

Fig. 5
Fig. 5

Fluorescence trace across the BaF2 crystal irradiated from one side with a KrF laser pulse at an input intensity of 10 GW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I L ( L - ) / I L ( 0 + ) = [ I F ( L - ) / I F ( 0 + ) ] 1 / 2 ,
I L ( L - ) I L ( 0 + ) = 1 1 + I in ( 1 - R ) β L ,
I F ( x = L - ) I F ( x = 0 + ) = - [ exp ( - x 2 ) 1 + β L ( 1 - R ) I 0 exp ( - x 2 ) ] 2 d x - exp ( - 2 x 2 ) d x .

Metrics