Abstract

A simple and effective technique for synchronizing two independent Ti:sapphire lasers was developed and used for difference-frequency generation. By control of pump intensity, buildup times of these lasers were adjusted to coincide for any combination of wavelengths that was needed for the production of a desired difference frequency. Synchronized pulses were mixed at a AgGaS2 crystal, producing infrared pulses from 6.2 to 9.7 μm. Characteristic features of the method as well as its possible extension of the tuning range are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683–1690 (1973).
    [CrossRef]
  2. K. Kato, “High-power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
    [CrossRef]
  3. D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
    [CrossRef]
  4. U. Simon, Z. Benko, M. W. Sigrist, R. F. Curl, F. K. Tittel, “Design considerations of an infrared spectrometer based on difference-frequency generation in AgGaSe2,” Appl. Opt. 32, 6650–6655 (1993).
    [CrossRef] [PubMed]
  5. A. H. Kung, “Efficient conversion of high-power narrow-band Ti:sapphire laser radiation to the mid-infrared in KTiOAsO4,” Opt. Lett. 20, 1107–1109 (1995).
    [CrossRef] [PubMed]
  6. T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
    [CrossRef]
  7. S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
    [CrossRef]
  8. A. H. Kung, “Regenerative amplification of a single-frequency optical parametric oscillator,” Opt. Lett. 18, 2017–2019 (1993).
    [CrossRef] [PubMed]
  9. J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
    [CrossRef]
  10. H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
    [CrossRef]
  11. L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
    [CrossRef]
  12. G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
    [CrossRef]
  13. W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
    [CrossRef]
  14. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 53–127.
  15. D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
    [CrossRef]
  16. G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
    [CrossRef]
  17. D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
    [CrossRef]
  18. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).
  19. K. L. Vodopyanov, “Parametric generation of tunable infrared radiation in ZnGeP2 and GaSe pumped at 3 μm,” J. Opt. Soc. Am. B 10, 1723–1927 (1993).
    [CrossRef]
  20. Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
    [CrossRef]
  21. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Calculation of nonlinear frequency-conversion efficiency,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 3–51.
  22. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
    [CrossRef] [PubMed]
  23. S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
    [CrossRef]

1995 (1)

1994 (1)

W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

1993 (3)

1992 (2)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

1991 (4)

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
[CrossRef]

T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
[CrossRef] [PubMed]

1988 (1)

J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

1986 (1)

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

1985 (1)

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
[CrossRef]

1984 (2)

K. Kato, “High-power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

1979 (1)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

1973 (2)

A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683–1690 (1973).
[CrossRef]

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
[CrossRef]

1971 (2)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Abdullaev, G. B.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Bakker, H. J.

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

Ballman, A. A.

L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
[CrossRef]

Bartoshevich, S. G.

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

Benko, Z.

Bethune, D. S.

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

Bierlein, J. D.

W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
[CrossRef]

Curl, R. F.

Deshazer, L. G.

J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 53–127.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Calculation of nonlinear frequency-conversion efficiency,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 3–51.

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Elsaesser, T.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Calculation of nonlinear frequency-conversion efficiency,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 3–51.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 53–127.

Hanna, D. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
[CrossRef]

Kangas, K. W.

J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

Kasper, H. M.

G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Kato, K.

K. Kato, “High-power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

Kemis, J. T. M.

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

Kop, H. J.

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

Kulevskii, L. A.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Kung, A. H.

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

Lagendijk, A.

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

Lobentanzer, H.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
[CrossRef]

Loiacono, D. N.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Loiacono, G. M.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Luntz, A. C.

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

McFee, J. H.

G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

McGee, T.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Mikhnyuk, I. V.

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 53–127.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Calculation of nonlinear frequency-conversion efficiency,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 3–51.

Norwood, R. G.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Pine, A. S.

Prokhorov, A. M.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Rampal, V. V.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
[CrossRef]

Raymond, T. D.

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

Route, E. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Salaev, E. Yu.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Savel’ev, A. D.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Seilmeier, A.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
[CrossRef]

Sigrist, M. W.

Simon, U.

Skripko, G. A.

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

Smirnov, V. V.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Smith, A. V.

Smith, R. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

Stoilzen-berger, R. A.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Tarazevich, I. G.

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

Tittel, F. K.

Vodopyanov, K. L.

Zoia, J. J.

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

Appl. Phys. Lett. (3)

G. M. Loiacono, D. N. Loiacono, J. J. Zoia, R. A. Stoilzen-berger, T. McGee, R. G. Norwood, “Optical properties and ionic conductivity of KTiOAsO4 crystals,” Appl. Phys. Lett. 61, 895–897 (1992).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, E. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

J. M. Eggleston, L. G. Deshazer, K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015 (1988).
[CrossRef]

G. D. Boyd, H. M. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

K. Kato, “High-power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

J. Cryst. Growth (1)

L. K. Cheng, J. D. Bierlein, A. A. Ballman, “Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes,” J. Cryst. Growth 110, 697–703 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Yu. Salaev, V. V. Smirnov, “GaSe, a new effective crystal for nonlinear optics,” JETP Lett. 16, 90–92 (1992).

Opt. Commun. (4)

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by downconversion in AgGaS2,” Opt. Commun. 52, 355–359 (1985).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29–31 (1971).
[CrossRef]

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151–153 (1973).
[CrossRef]

H. J. Bakker, J. T. M. Kemis, H. J. Kop, A. Lagendijk, “Generation of intense picosecond pulses tunable between 1.2 and 8.7 μm,” Opt. Commun. 86, 58–64 (1991).
[CrossRef]

Opt. Lett. (3)

Sov. J. Quantum Electron. (1)

S. G. Bartoshevich, I. V. Mikhnyuk, G. A. Skripko, I. G. Tarazevich, “Efficient difference-frequency generator utilizing an Al2O3:Ti3+ laser,” Sov. J. Quantum Electron. 21, 503–507 (1991).
[CrossRef]

Other (2)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 53–127.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Calculation of nonlinear frequency-conversion efficiency,” in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed. (Springer-Verlag, New York, 1991), pp. 3–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated tuning characteristics of pump and signal waves with type I phase matching for AgGaS2 at the incident angles of 40° and 55°. The solid and dashed curves indicate the pump and signal wavelengths phase matched for DFG at a fixed incident angle, respectively. A possible maximum tuning range of a Ti:sapphire laser from 680 to 1100 nm is indicated by the shaded portions.

Fig. 2
Fig. 2

Optical arrangement for synchronization of the two-color Ti:sapphire laser.

Fig. 3
Fig. 3

Output energies per pulse as a function of wavelength for the two Ti:sapphire lasers: oscillator 1 (dotted curve) and oscillator 2 (solid curve).

Fig. 4
Fig. 4

Buildup time and pump-intensity relations for 750-nm pulses from oscillator 1 and 842- and 909-nm pulses from oscillator 2.

Fig. 5
Fig. 5

Synchronization of output pulses. The pump intensity of oscillator 1 (750 nm) was fixed at 257 MW/cm2, and oscillator 2 (842 nm) was varied from 257 MW/cm2 to 220 MW/cm2. Pulse shapes detected with p-i-n photodiodes were monitored on a digital oscilloscope.

Fig. 6
Fig. 6

(a) Jitter of the pulse buildup time of the Ti:sapphire oscillator (oscillator 1), (b) relative jitter of the temporal coincidence between two synchronized pulses from oscillators 1 and 2.

Fig. 7
Fig. 7

Output energies per pulse generated with DFM. Solid and dashed curves show the results with AgGaS2 crystal cut at 47° and 52°, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ d = τ c ( x - 1 ) - 1 ln [ 0.1 V N th ( x - ln x - 1 ) ] ,
n D o ω D = n p e ( θ ) ω p - n S o ω S ,
η = P D P P = 2 3 π 2 d eff 2 P S L 2 0 c n P n S n D λ D 2 A .

Metrics