Abstract

By pumping a single-mode optical fiber with a powerful broadband nonselective dye laser, we obtain a high-efficiency wideband continuum (530–930 nm) with nonlinear conversion efficiency exceeding 90%. Experimental conditions for a coherent regime of broadband stimulated Raman scattering are created, which in combination with the broadband self-phase modulation and the four-photon parametric processes leads to a spectral broadening and to the continuum formation. The influence of the pump laser spectral linewidth on the nonlinear conversion efficiency is analyzed and investigated by comparative experiments at narrow-band and broadband laser excitations.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989).
  2. J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
    [CrossRef]
  3. A. Sharma, M. Dokhanian, Z. Wu, A. Williams, P. Venkateswarlu, “Four-photon-mixing-mediated stimulated Raman scattering in a multimode optical fiber,” Opt. Lett. 19, 1122–1124 (1994).
    [PubMed]
  4. R. Schulz, H. Harde, “Pulse generation in birefringent optical fibers by four-wave mixing and Raman scattering,” J. Opt. Soc. Am. B 12, 1279–1286 (1995).
    [CrossRef]
  5. E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
    [CrossRef]
  6. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  7. C. Lin, “Nonlinear optics in fibers for fiber measurements and special device functions,” J. Lightwave Technol. LT-4, 1103–1115 (1986).
    [CrossRef]
  8. C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
    [CrossRef]
  9. Y. Fujii, B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48–50 (1980).
    [CrossRef] [PubMed]
  10. I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
    [CrossRef]
  11. R. H. Stolen, J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
    [CrossRef]
  12. R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [CrossRef]
  13. C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  14. I. K. Ilev, I. G. Koprinkov, “High-efficient wide-band frequency conversion in optical fibers at broad-band powerful laser excitation,” in LEOS ’94 Conference Proceedings (Institute of Electrical and Electronics Engineers, Boston, 1994), pp. 95–96.
  15. S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).
  16. A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211–232 (1978).
    [CrossRef]
  17. M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
    [CrossRef]
  18. G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).
  19. I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
    [CrossRef]
  20. R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
    [CrossRef]
  21. K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
    [CrossRef]
  22. R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  23. R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
    [CrossRef] [PubMed]
  24. V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
    [CrossRef]
  25. Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
    [CrossRef]

1995 (1)

1994 (1)

1991 (1)

I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
[CrossRef]

1990 (1)

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

1987 (1)

1986 (1)

C. Lin, “Nonlinear optics in fibers for fiber measurements and special device functions,” J. Lightwave Technol. LT-4, 1103–1115 (1986).
[CrossRef]

1984 (1)

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

1982 (3)

R. H. Stolen, J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
[CrossRef]

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

1980 (3)

K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
[CrossRef]

J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Y. Fujii, B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48–50 (1980).
[CrossRef] [PubMed]

1979 (1)

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[CrossRef]

1978 (4)

I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[CrossRef]

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211–232 (1978).
[CrossRef]

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

1977 (1)

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

1976 (1)

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

1974 (1)

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).

1972 (1)

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989).

Akhmanov, S. A.

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).

Alfano, R. R.

R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Ashiya, F.

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

Baldeck, P. L.

Belic, M.

J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

Carlsten, J. L.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[CrossRef]

Chamorovskii, Yu. K.

V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
[CrossRef]

D’yakov, Yu. E.

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).

Dianov, E. M.

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

Dokhanian, M.

Dzhotyan, G. P.

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

French, W. G.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Fujii, Y.

Gersten, J. I.

J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Golovchenko, E.

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

Grasiuk, A. Z.

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211–232 (1978).
[CrossRef]

Grigor’yants, V. V.

V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
[CrossRef]

Harde, H.

Hill, K. O.

Ho, P. P.

Ilev, I. K.

I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
[CrossRef]

I. K. Ilev, I. G. Koprinkov, “High-efficient wide-band frequency conversion in optical fibers at broad-band powerful laser excitation,” in LEOS ’94 Conference Proceedings (Institute of Electrical and Electronics Engineers, Boston, 1994), pp. 95–96.

Inoue, K.

K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
[CrossRef]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Jain, R. K.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

Johnson, D. C.

Kawasaki, B. S.

Kojima, N.

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

Koprinkov, I. G.

I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
[CrossRef]

I. K. Ilev, I. G. Koprinkov, “High-efficient wide-band frequency conversion in optical fibers at broad-band powerful laser excitation,” in LEOS ’94 Conference Proceedings (Institute of Electrical and Electronics Engineers, Boston, 1994), pp. 95–96.

Kortenski, T. G.

I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
[CrossRef]

Lee, C.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

Lin, C.

C. Lin, “Nonlinear optics in fibers for fiber measurements and special device functions,” J. Lightwave Technol. LT-4, 1103–1115 (1986).
[CrossRef]

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Mamyshev, P.

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

Mikhailov, S. I.

I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[CrossRef]

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

Mironov, A. B.

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

Mostowski, J.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[CrossRef]

Murakami, Y.

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

Negishi, Y.

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

Nguyen, V. T.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

Noguchi, K.

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

Pavlov, L. I.

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).

Pilipetskii, A. N.

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

Raccah, F.

Raymer, M. G.

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[CrossRef]

Schulz, R.

Sharma, A.

Smirnov, V. I.

V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
[CrossRef]

Stolen, R. H.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Tanigawa, T.

K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
[CrossRef]

Tynes, A. R.

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Venkateswarlu, P.

Washio, K.

K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
[CrossRef]

Williams, A.

Wu, Z.

Zubarev, I. G.

I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[CrossRef]

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211–232 (1978).
[CrossRef]

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Appl. Phys. (1)

A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211–232 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–64 (1972).
[CrossRef]

Electron. Lett. (1)

K. Washio, K. Inoue, T. Tanigawa, “Efficient generation of near-I.R. stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 μm,” Electron. Lett. 16, 331–333 (1980).
[CrossRef]

Electron. Lett. (1)

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Murakami, K. Noguchi, F. Ashiya, Y. Negishi, N. Kojima, “Maximum measurable distances for a single-mode optical fiber fault location using the stimulated Raman scattering (SRS) effect,” IEEE J. Quantum Electron. QE-18, 1473–1477 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Golovchenko, P. Mamyshev, A. N. Pilipetskii, E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815–1820 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
[CrossRef]

J. Lightwave Technol. (1)

C. Lin, “Nonlinear optics in fibers for fiber measurements and special device functions,” J. Lightwave Technol. LT-4, 1103–1115 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

I. K. Ilev, I. G. Koprinkov, T. G. Kortenski, “High-energy broadband single-pass fiber Raman laser pumped by a cavity-taper output Nd:YAG laser,” Opt. Quantum Electron. 23, 1011–1015 (1991).
[CrossRef]

Phys. Rev. A (1)

J. I. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulations,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Phys. Rev. A (1)

M. G. Raymer, J. Mostowski, J. L. Carlsten, “Theory of stimulated Raman scattering with broad-band lasers,” Phys. Rev. A 19, 2304–2316 (1979).
[CrossRef]

Phys. Rev. A (1)

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. V. Grigor’yants, V. I. Smirnov, Yu. K. Chamorovskii, “Generation of wide-band optical continuum in fiber waveguides,” Sov. J. Quantum Electron. 12, 841–847 (1982).
[CrossRef]

Sov. J. Quantum Electron. (1)

I. G. Zubarev, S. I. Mikhailov, “Influence of parametric effects on the stimulated scattering of nonmonochromatic pump radiation,” Sov. J. Quantum Electron. 8, 1338–1344 (1978).
[CrossRef]

Sov. Phys. JETP (2)

G. P. Dzhotyan, Yu. E. D’yakov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, “Amplification during stimulated Raman scattering in a nonmonochromatic pump field,” Sov. Phys. JETP 46, 431–435 (1977).

S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by a broad-band pump,” Sov. Phys. JETP 39, 249–256 (1974).

Other (3)

I. K. Ilev, I. G. Koprinkov, “High-efficient wide-band frequency conversion in optical fibers at broad-band powerful laser excitation,” in LEOS ’94 Conference Proceedings (Institute of Electrical and Electronics Engineers, Boston, 1994), pp. 95–96.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989).

R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for narrow-band and broadband laser excitation of optical fibers. Nd:YAG, Q-switched single-mode Nd:YAG laser; 2ω, second-harmonic generator; P1, P2, prisms; D, diaphragm; L, lens; DC, dye cell with Rh6G; Mt, total reflectance mirror; G1, G2, diffraction gratings; Mout, output mirror; O1, O2, O3, objectives; SMF, single-mode fibers; BS, beam splitter; λ, monochromator; FD, photodiode; DP, data processing; PF, photographic film.

Fig. 2
Fig. 2

Wideband continuous spectrum in a 80-m-long single-mode optical fiber by broadband (λ p = 556 nm, Δλ p = 7 nm) powerful (P p = 1.5 kW) laser excitation.

Fig. 3
Fig. 3

Comparative spectra and microdensitograms corresponding to the broadband (a), (b) and the narrow-band (c), (d) laser excitation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g R br = g R n Δ ν R / ( Δ ν p + Δ ν R ) ,
I pth br = I pth n ( 1 + Δ ν p L ) / ( 6 / μ + Δ ν R L ) ,
L L c SRS = ( Δ N Δ ν p ) - 1 ,
I p > I cr = ( L c SRS g SRS ) - 1 .
Δ ν S = Δ ν p { 4 [ 1 + λ p 2 γ 4 / ( 256 π 4 c 2 Δ ν R m 0 Γ 3 n 2 ) 2 ] } 1 / 2 .
L c FPM = [ λ p D ( λ ) Δ ν p Δ ν F ] - 1 ,

Metrics