Abstract

A novel two-dimensional finite-difference time-domain simulation for treating the interaction of a focused beam with a rewritable optical disk is detailed and experimentally validated. In this simulation, the real material properties of the rewritable multilayer stack and the aperiodic nature of the disk topography are considered. Excellent agreement is obtained between calculated and measured push–pull tracking servosignals for magneto-optical disks with pregrooves and infinite-length preformat pits. To demonstrate the utility of the simulation as a design tool, the design process for a 0.9-μm track pitch, continuous, composite servoformat magneto-optical disk is given.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video disks,” J. Opt. Soc. Am. 69, 4–24 (1979).
    [CrossRef]
  2. H. H. Hopkins, C. S. Chung, “Influence on the read-out signal of the height profile of the pits (or bumps) on optical disks,” J. Mod. Opt. 42, 57–83 (1995).
    [CrossRef]
  3. V. B. Jipson, C. C. Williams, “Two-dimensional modeling of an optical disk readout,” Appl. Opt. 22, 2202–2209 (1983).
    [CrossRef] [PubMed]
  4. M. Mansuripur, “Computer modeling of optical storage media and systems,” in Optical Data Storage, Y. Tsunoda, M. de Haan, eds., Proc. SPIE1316, 70–80 (1990).
  5. P. Arnett, “Modeling and design of tracking servo signals for 2X and 4X substrates,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 238–246 (1994).
  6. P. Sheng, “Theoretical considerations of optical diffraction from RCA VideoDisk signals,” RCA Rev. 39, 513–555 (1978).
  7. H. Ooki, “Vector diffraction theory for magneto-optical disk systems,” Optik 89, 15–22 (1991).
  8. K. Kobayashi, “Vector diffraction modeling: polarization dependence of optical readout/servo signals,” Jpn. J.Appl. Phys. 32, 3175–3184 (1993).
    [CrossRef]
  9. J. H. T. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhuis, ed. (Hilger, Bristol, 1985), Chap. 3.
  10. Y. Miyazaki, K. Manage, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991).
    [CrossRef]
  11. Y. Funabiki, T. Kojima, “Analysis of the light-beam scattering and the sum and differential signal output by arbitrarily shaped pits and bosses,” Electron. Commun. Jpn. Part 2 72, 37–47 (1989).
    [CrossRef]
  12. T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991).
    [CrossRef]
  13. For example, L. Li, “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A 11, 2816–2828 (1994).
    [CrossRef]
  14. “Information technology—130 mm optical disk cartridges. Capacity: 1.3 Gigabytes per cartridge-for data interchange,” ISO/IEC 13549 (International Organization for Standardization/International Electrotechnical Commission, Casse Postale 56, CH-1211, Geneva 20, Switzerland, 1994).
  15. A. Taflove, K. Umanshankar, “The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” in PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering, Michael M. Morgan, ed. (Elsevier, New York, 1990), Chap. 8.
  16. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).
    [CrossRef]
  17. J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,”J. Opt. Soc. Am. A 12, 1974–1983 (1995).
    [CrossRef]
  18. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 380–382.
  19. A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990), p. 351.
  20. H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
    [CrossRef]

1995 (3)

H. H. Hopkins, C. S. Chung, “Influence on the read-out signal of the height profile of the pits (or bumps) on optical disks,” J. Mod. Opt. 42, 57–83 (1995).
[CrossRef]

J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings,”J. Opt. Soc. Am. A 12, 1974–1983 (1995).
[CrossRef]

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

1994 (1)

1993 (1)

K. Kobayashi, “Vector diffraction modeling: polarization dependence of optical readout/servo signals,” Jpn. J.Appl. Phys. 32, 3175–3184 (1993).
[CrossRef]

1991 (3)

Y. Miyazaki, K. Manage, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991).
[CrossRef]

H. Ooki, “Vector diffraction theory for magneto-optical disk systems,” Optik 89, 15–22 (1991).

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991).
[CrossRef]

1989 (1)

Y. Funabiki, T. Kojima, “Analysis of the light-beam scattering and the sum and differential signal output by arbitrarily shaped pits and bosses,” Electron. Commun. Jpn. Part 2 72, 37–47 (1989).
[CrossRef]

1983 (1)

1981 (1)

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).
[CrossRef]

1979 (1)

1978 (1)

P. Sheng, “Theoretical considerations of optical diffraction from RCA VideoDisk signals,” RCA Rev. 39, 513–555 (1978).

Arnett, P.

P. Arnett, “Modeling and design of tracking servo signals for 2X and 4X substrates,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 238–246 (1994).

Baalbergen, J.-J.

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

Chung, C. S.

H. H. Hopkins, C. S. Chung, “Influence on the read-out signal of the height profile of the pits (or bumps) on optical disks,” J. Mod. Opt. 42, 57–83 (1995).
[CrossRef]

Funabiki, Y.

Y. Funabiki, T. Kojima, “Analysis of the light-beam scattering and the sum and differential signal output by arbitrarily shaped pits and bosses,” Electron. Commun. Jpn. Part 2 72, 37–47 (1989).
[CrossRef]

Haddeman, T. B. J.

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins, C. S. Chung, “Influence on the read-out signal of the height profile of the pits (or bumps) on optical disks,” J. Mod. Opt. 42, 57–83 (1995).
[CrossRef]

H. H. Hopkins, “Diffraction theory of laser read-out systems for optical video disks,” J. Opt. Soc. Am. 69, 4–24 (1979).
[CrossRef]

Ido, J.

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991).
[CrossRef]

Jipson, V. B.

Judkins, J. B.

Kobayashi, K.

K. Kobayashi, “Vector diffraction modeling: polarization dependence of optical readout/servo signals,” Jpn. J.Appl. Phys. 32, 3175–3184 (1993).
[CrossRef]

Kojima, T.

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991).
[CrossRef]

Y. Funabiki, T. Kojima, “Analysis of the light-beam scattering and the sum and differential signal output by arbitrarily shaped pits and bosses,” Electron. Commun. Jpn. Part 2 72, 37–47 (1989).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 380–382.

Li, L.

Manage, K.

Y. Miyazaki, K. Manage, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991).
[CrossRef]

Mansuripur, M.

M. Mansuripur, “Computer modeling of optical storage media and systems,” in Optical Data Storage, Y. Tsunoda, M. de Haan, eds., Proc. SPIE1316, 70–80 (1990).

Marchant, A. B.

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990), p. 351.

Miyazaki, Y.

Y. Miyazaki, K. Manage, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991).
[CrossRef]

Mur, G.

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).
[CrossRef]

Ooki, H.

H. Ooki, “Vector diffraction theory for magneto-optical disk systems,” Optik 89, 15–22 (1991).

Pasman, J. H. T.

J. H. T. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhuis, ed. (Hilger, Bristol, 1985), Chap. 3.

Sheng, P.

P. Sheng, “Theoretical considerations of optical diffraction from RCA VideoDisk signals,” RCA Rev. 39, 513–555 (1978).

Taflove, A.

A. Taflove, K. Umanshankar, “The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” in PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering, Michael M. Morgan, ed. (Elsevier, New York, 1990), Chap. 8.

Umanshankar, K.

A. Taflove, K. Umanshankar, “The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” in PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering, Michael M. Morgan, ed. (Elsevier, New York, 1990), Chap. 8.

van Helleputte, H. R. J. R.

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

Verheijen, M. J.

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

Williams, C. C.

Ziolkowski, R. W.

Appl. Opt. (1)

Electron. Commun. Jpn. Part 2 (2)

Y. Funabiki, T. Kojima, “Analysis of the light-beam scattering and the sum and differential signal output by arbitrarily shaped pits and bosses,” Electron. Commun. Jpn. Part 2 72, 37–47 (1989).
[CrossRef]

T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 74, 11–20 (1991).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).
[CrossRef]

J. Mod. Opt. (1)

H. H. Hopkins, C. S. Chung, “Influence on the read-out signal of the height profile of the pits (or bumps) on optical disks,” J. Mod. Opt. 42, 57–83 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Jpn. J.Appl. Phys. (1)

K. Kobayashi, “Vector diffraction modeling: polarization dependence of optical readout/servo signals,” Jpn. J.Appl. Phys. 32, 3175–3184 (1993).
[CrossRef]

Microelectron. Eng. (1)

H. R. J. R. van Helleputte, T. B. J. Haddeman, M. J. Verheijen, J.-J. Baalbergen, “Comparative study of 3D measurement techniques (SPM, SEM, TEM) for submicron structures,” Microelectron. Eng. 27, 547–550 (1995).
[CrossRef]

Optik (1)

H. Ooki, “Vector diffraction theory for magneto-optical disk systems,” Optik 89, 15–22 (1991).

Radio Sci. (1)

Y. Miyazaki, K. Manage, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991).
[CrossRef]

RCA Rev. (1)

P. Sheng, “Theoretical considerations of optical diffraction from RCA VideoDisk signals,” RCA Rev. 39, 513–555 (1978).

Other (7)

J. H. T. Pasman, “Vector theory of diffraction,” in Principles of Optical Disc Systems, G. Bouwhuis, ed. (Hilger, Bristol, 1985), Chap. 3.

M. Mansuripur, “Computer modeling of optical storage media and systems,” in Optical Data Storage, Y. Tsunoda, M. de Haan, eds., Proc. SPIE1316, 70–80 (1990).

P. Arnett, “Modeling and design of tracking servo signals for 2X and 4X substrates,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 238–246 (1994).

“Information technology—130 mm optical disk cartridges. Capacity: 1.3 Gigabytes per cartridge-for data interchange,” ISO/IEC 13549 (International Organization for Standardization/International Electrotechnical Commission, Casse Postale 56, CH-1211, Geneva 20, Switzerland, 1994).

A. Taflove, K. Umanshankar, “The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” in PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering, Michael M. Morgan, ed. (Elsevier, New York, 1990), Chap. 8.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1986), pp. 380–382.

A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990), p. 351.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Atomic force microscope image of a 1.3-Gbyte M-O disk substrate.14

Fig. 2
Fig. 2

Simplified schematic of a rewritable optical drive.

Fig. 3
Fig. 3

(a) Detail of the head–media interface (groove only), and (b) tracking servosignals plotted as a function of the radial beam placement in (a). Par., parallel; perp., perpendicular.

Fig. 4
Fig. 4

(a) Detail of the head–media interface (grooves and pits), and (b) tracking servosignals plotted as a function of the radial beam placement in (a).

Fig. 5
Fig. 5

Geometric input parameters for the 2D-FDTD model in the approximate geometry case.

Fig. 6
Fig. 6

Problem geometry for the 2D-FDTD simulation.

Fig. 7
Fig. 7

Detail of the simulation space for the 2D-FDTD simulation.

Fig. 8
Fig. 8

(a) Calculated TCS as a function of beam position for the geometries of Table 1 (TE polarization), and (b) calculated TCS as a function of beam position for the geometries of Table 1 (TM polarization).

Fig. 9
Fig. 9

(a) Calculated dTES as a function of beam position for the geometries of Table 1 (TE polarization), and (b) calculated dTES as a function of beam position for the geometries of Table 1 (TM polarization).

Fig. 10
Fig. 10

(a) Atomic force microscope scan of groove-only geometry, and (b) atomic force microscope scan of groove with infinite-length pit geometry.

Fig. 11
Fig. 11

Experimental versus calculated TCS values as a function of radius on a variable groove geometry M-O disk.

Fig. 12
Fig. 12

Experimental versus calculated TES values as a function of radius on a variable groove geometry M-O disk.

Fig. 13
Fig. 13

Experimental versus calculated dTES values as a function of radius on a variable groove geometry M-O disk.

Fig. 14
Fig. 14

(a) TE TCS versus groove width and depth for the Gaussian groove profile of Fig. 5, (b) TM TCS versus groove width and depth for the Gaussian groove profile of Fig. 5, (c) TE dTES versus groove width and depth for the Gaussian groove profile of Fig. 5, and (d) TM dTES versus groove width and depth for the profile of Fig. 5.

Fig. 15
Fig. 15

TE 2D-HSN versus pit width and depth for the Gaussian groove and trapezoidal pit profiles of Fig. 5.

Tables (5)

Tables Icon

Table 1 2D-FDTD Simulation Input Parameters for the Example Cases of Subsection 4.A.

Tables Icon

Table 2 Comparisons of FDTD Simulation Calculations with Experiment (Groove-Only Geometry)

Tables Icon

Table 3 Comparisons of FDTD Simulation Calculations with Experiment (Infinite-Length Pits and Grooves)

Tables Icon

Table 4 Potential Sources of Computational and Experimental Errors

Tables Icon

Table 5 Sensitivity of Model Predictions to Variations of Input Parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

TCS = SUM land SUM groove SUM land ,
TES = DIFF max DIFF min SUM land ,
dTES = ( DIFF SUM ) max ( DIFF SUM ) min ,
2 D HSN = dTES no pit dTES pit dTES no pit ,
t H = 1 μ 0 × E ,
t E = 1 × H 1 t P L ,
2 t 2 P L + Γ t P L + ω 0 2 P L = 0 ω 0 2 χ 0 E ,
P total = ( 0 ) E + P L .
n ( ω ) = [ r ( ω ) ] 1 / 2 = ( χ 0 ω 0 2 ω 0 2 ω 2 + j Γ ω + 0 ) 1 / 2 .
E 0 ( x ) = [ ( 8 π ) 1 / 2 η w 0 P 0 ] 1 / 2 exp [ ( x w 0 ) 2 ] .
E y scat ( R , θ ) 1 2 λ R sampling plane d x exp [ j k 0 sin ( θ ) x ] × [ E y ( x , z t ) cos ( θ ) + η H x ( x , z t ) ] ,
θ max = sin 1 ( NA / n substracte ) .

Metrics