Abstract

The performance specifications of a holographic three-dimensional disk system are experimentally characterized. A surface density of 10 bits/μm2 is experimentally demonstrated with a 100-μm-thick photopolymer as the recording medium.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, “Parallel optical memories,” Byte 17(9), 179–182 (1992).
  2. H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]
  3. D. L. Staebler, J. J. Amodei, W. Philips, “Multiple storage of thick holograms in LiNbO3,” presented at the Seventh International Quantum Electronics Conference, Montreal, Quebec, Canada, 1972.
  4. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 504–607 (1991).
    [CrossRef]
  5. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).
  6. G. A. Rakuljic, V. Levya, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  7. C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  8. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]
  9. D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
    [CrossRef]
  10. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  11. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  12. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  13. Toshiba SD (Super Density), Format tech. spec. (Toshiba, Japan, 1995).
  14. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]
  15. G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  16. D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
    [CrossRef]
  17. H.-Y. S. Li, D. Psaltis, “Alignment sensitivity of holographic three-dimensional disk,” J. Opt. Soc. Am. A 12, 1902–1912 (1995).
    [CrossRef]

1995

1994

1993

1992

1991

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 504–607 (1991).
[CrossRef]

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
[CrossRef] [PubMed]

1990

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, W. Philips, “Multiple storage of thick holograms in LiNbO3,” presented at the Seventh International Quantum Electronics Conference, Montreal, Quebec, Canada, 1972.

Barbastathis, G.

Brady, D.

D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992).
[CrossRef]

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Curtis, K.

Denz, C.

C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Fainman, Y.

Ford, J. E.

Gu, X. G.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Lee, S. H.

Levene, M.

Levya, V.

Li, H.-Y. S.

Lin, S.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Ma, J.

Mok, F. H.

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 504–607 (1991).
[CrossRef]

Mouroulis, P.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Philips, W.

D. L. Staebler, J. J. Amodei, W. Philips, “Multiple storage of thick holograms in LiNbO3,” presented at the Seventh International Quantum Electronics Conference, Montreal, Quebec, Canada, 1972.

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Roosen, F.

C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Sasaki, H.

Staebler, D. L.

D. L. Staebler, J. J. Amodei, W. Philips, “Multiple storage of thick holograms in LiNbO3,” presented at the Seventh International Quantum Electronics Conference, Montreal, Quebec, Canada, 1972.

Stoll, H. M.

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 504–607 (1991).
[CrossRef]

Tackitt, M. C.

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 504–607 (1991).
[CrossRef]

Taketomi, Y.

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Yariv, A.

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Yu, F. T. S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Zang, Y.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Zhao, F.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Zhao, G.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Zhou, H.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

Appl. Opt.

Byte

D. Psaltis, “Parallel optical memories,” Byte 17(9), 179–182 (1992).

J. Mod. Opt.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Nature (London)

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
[CrossRef]

Opt. Commun.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light,” Opt. Commun. 101, 171–176 (1991).

C. Denz, G. Pauliat, F. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Lett.

Other

Toshiba SD (Super Density), Format tech. spec. (Toshiba, Japan, 1995).

D. L. Staebler, J. J. Amodei, W. Philips, “Multiple storage of thick holograms in LiNbO3,” presented at the Seventh International Quantum Electronics Conference, Montreal, Quebec, Canada, 1972.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of a holographic 3-D disk system that uses a combination of angle and peristrophic multiplexing. SLM, spatial light modulator.

Fig. 2
Fig. 2

Diagram of the experimental setup in which Dupont’s 100-μm-thick photopolymer was used.

Fig. 3
Fig. 3

Holographic 3-D disk surface density as a function of the recording-material thickness. The solid curve is the prediction from Ref. 2, and the dotted curve is the approximate analysis used in this paper.

Fig. 4
Fig. 4

Reconstructed image from one of the 32 holograms stored.

Fig. 5
Fig. 5

Diffraction efficiency as a function of exposure energy for Dupont’s HRF-150-100 photopolymer.

Fig. 6
Fig. 6

Scheduled exposure time as a function of the hologram number for 50 holograms.

Fig. 7
Fig. 7

Diffraction efficiency of 50 holograms recorded with the second iteration of the recording schedule.

Fig. 8
Fig. 8

Diffraction efficiency as a function of the number of holograms stored in Dupont’s HRF-150-38, 100-μm-thick photopolymer.

Fig. 9
Fig. 9

Diffraction efficiency as a function of the hologram number for the 1000-hologram experiment.

Fig. 10
Fig. 10

Reconstruction of one of the 1000 stored holograms.

Fig. 11
Fig. 11

Cross section of the reconstruction shown in Fig. 10.

Fig. 12
Fig. 12

SNR characterization for the high-density setup.

Fig. 13
Fig. 13

Combined histogram obtained from nine different sampled windows.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D 3 D = M D 2 D ,
M angle = Ө Δ θ = Ө L sin ( θ r + θ s ) λ cos ( θ s ) ,
Δ ψ Fourier = d / F sin θ r + sin θ s ,
Δ ψ Image = ( 2 λ ) / δ sin θ s + sin θ r ,
R in = N p / τ in ,
t n = A sat M f ( E n 1 ) I ,
R ¯ in = M N P n = 1 M τ in ( n ) = M 2 N P I A sat n = 1 M 1 f ( E n 1 ) .
τ = P h c N p η I inc λ outside ,
η = ( M / # M ) 2 ,
R out = N p / τ out ,
SNR = m 2 m 1 ( σ 1 2 + σ 2 2 ) 1 / 2 ,

Metrics