Abstract

We present and analyze our hybrid wavelength-and-angle-multiplexed volume holographic memory system. The hybridization of wavelength and angle multiplexing relaxes demands on spectral-tuning sources, angle-tuning devices, and optical system numerical apertures while maintaining a large K-space addressability. We consider realistic properties of our volume holographic memory system, addressing practical issues such as storage density and material-dependent photon-limited information throughput. Finally, we present experimental results of the storage of 2000 sparse-wavelength angle-multiplexed volume holograms in a 1.86-cm3 volume of lithium niobate.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hill, “Holographic memories and their future,” in Advances in Holography, N. H. Farhat, ed. (Dekker, New York and Basel, 1976), Vol. 3, pp. 1–251.
  2. S. V. Pappu, “Holographic memories: a critical review,” Int. J. Optoelectron. 5, 251–292 (1990).
  3. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
    [CrossRef]
  4. G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
    [CrossRef]
  5. S. Wu, Q. Song, A. Mayers, D. A. Gregory, F. T. S. Yu, “Reconfigurable interconnections using photorefractive holograms,” Appl. Opt. 29, 1118–1125 (1990).
    [CrossRef] [PubMed]
  6. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  7. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
    [CrossRef]
  8. H. Zhou, F. Zhao, F. T. S. Yu, “Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram,” Appl. Opt. 33, 4339– 4344 (1994).
    [CrossRef] [PubMed]
  9. S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
    [CrossRef] [PubMed]
  10. K. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
    [CrossRef]
  11. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  12. I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
    [CrossRef]
  13. G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 18 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.
  14. J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
    [CrossRef]
  15. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  16. C. Alves, G. Pauliat, G. Roosen, “Dynamic phase-encoding storage of 64 images in BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894–1896 (1994).
    [CrossRef] [PubMed]
  17. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages using phase code multiplexing in volume holography,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 427–429.
    [CrossRef]
  18. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
    [CrossRef]
  19. F. T. S. Yu, F. Zhao, H. Zhou, S. Yin, “Cross-talk in a wavelength-multiplexed reflection-type photorefractive fiber hologram,” Opt. Lett. 18, 1849–1851 (1993).
    [CrossRef] [PubMed]
  20. K. Curtis, C. Gu, D. Psaltis, “Cross-talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
    [CrossRef] [PubMed]
  21. K. Curtis, D. Psaltis, “Cross talk in phase-coded holographic memories,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).
    [CrossRef]
  22. X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
    [CrossRef] [PubMed]
  23. J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
    [CrossRef]
  24. X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
    [CrossRef] [PubMed]
  25. Y. Qiao, D. Psaltis, “Sampled dynamic holographic memory,” Opt. Lett. 17, 1376–1378 (1992).
    [CrossRef] [PubMed]
  26. H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, Y. Taketomi, “Fast update of photorefractive optical memory,” Opt. Lett. 17, 1468–1470 (1992).
    [CrossRef] [PubMed]
  27. S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
    [CrossRef] [PubMed]
  28. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  29. C. Gu, P. Yeh, “Diffraction properties of fixed gratings in photorefractive media,” J. Opt. Soc. Am. B 7, 2339–2345 (1990).
    [CrossRef]
  30. M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
    [CrossRef]
  31. M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic grating sin LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]
  32. A. Pu, K. Curtis, D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE/LEOS 1994 (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 433–435.
  33. G. Burr, F. Mok, D. Psaltis, “Angle and spatially multiplexed holographic memory using the 90 deg. geometry,” presented at the 1994 OSA Annual Meeting, Dallas, Tex., October 1994, paper Tu-H6.
  34. S. Campbell, X. Yi, P. Yeh, “Sparse-wavelength angularly multiplexed volume holographic memory,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 225–227.
  35. S. Campbell, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, Francis T. S. Yu, ed., Proc. SPIE2529, pp. 134–144 (1995).
  36. D. J. Blumenthal, J. R. Sauer, “Multiwavelength logic gates with high computational efficiency,” in Optical Computing, Vol. 7 of 1993 Technical Digest Series (Optical Society of America, Washington, D. C., 1993), p. 64; P. Yeh, S. Campbell, S. Zhou, “Optical implementation of a multiwavelength half adder,” Opt. Lett. 18, 903–905 (1993).
    [CrossRef] [PubMed]
  37. F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702– 4707 (1991).
    [CrossRef] [PubMed]
  38. G. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of large scale holographic memories,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 148–151.
  39. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  40. M. A. Neifeld, “Multiple-error-correcting codes for improving the performance of optical matrix–vector processors,” Opt. Lett. 20, 758–760 (1995).
    [CrossRef] [PubMed]
  41. M. A. Neifeld, “Improvements in the capacity of computer-generated holographic storage using the Lee method with sparse multivalued reconstructions,” Appl. Opt. 34, 1396–1400 (1995).
    [CrossRef] [PubMed]
  42. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
    [CrossRef] [PubMed]
  43. S. Campbell, Y. Zhang, P. Yeh, “Material limitations in volume holographic copying,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1995), paper OMC15; S. Campbell, P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 128–131.
  44. S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).
  45. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987).
    [CrossRef] [PubMed]
  46. K. Curtis, AT&T Bell Labs, Murray Hill, N.J. 07974 (personal communication, 1995).

1995 (8)

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

K. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
[CrossRef]

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, “Multiple-error-correcting codes for improving the performance of optical matrix–vector processors,” Opt. Lett. 20, 758–760 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, “Improvements in the capacity of computer-generated holographic storage using the Lee method with sparse multivalued reconstructions,” Appl. Opt. 34, 1396–1400 (1995).
[CrossRef] [PubMed]

X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
[CrossRef] [PubMed]

1994 (6)

1993 (6)

1992 (4)

1991 (2)

1990 (5)

1987 (1)

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Agullo-Lopez, F.

Alvarez-Bravo, J. V.

J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
[CrossRef]

Alves, C.

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
[CrossRef]

Barker, R. C.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages using phase code multiplexing in volume holography,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 427–429.
[CrossRef]

Blumenthal, D. J.

D. J. Blumenthal, J. R. Sauer, “Multiwavelength logic gates with high computational efficiency,” in Optical Computing, Vol. 7 of 1993 Technical Digest Series (Optical Society of America, Washington, D. C., 1993), p. 64; P. Yeh, S. Campbell, S. Zhou, “Optical implementation of a multiwavelength half adder,” Opt. Lett. 18, 903–905 (1993).
[CrossRef] [PubMed]

Bolognini, N.

J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
[CrossRef]

Burr, G.

G. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of large scale holographic memories,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 148–151.

G. Burr, F. Mok, D. Psaltis, “Angle and spatially multiplexed holographic memory using the 90 deg. geometry,” presented at the 1994 OSA Annual Meeting, Dallas, Tex., October 1994, paper Tu-H6.

Burr, G. W.

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 18 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

Campbell, S.

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
[CrossRef] [PubMed]

X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
[CrossRef] [PubMed]

S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
[CrossRef] [PubMed]

S. Campbell, Y. Zhang, P. Yeh, “Material limitations in volume holographic copying,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1995), paper OMC15; S. Campbell, P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 128–131.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).

S. Campbell, X. Yi, P. Yeh, “Sparse-wavelength angularly multiplexed volume holographic memory,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 225–227.

S. Campbell, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, Francis T. S. Yu, ed., Proc. SPIE2529, pp. 134–144 (1995).

Carrascosa, M.

Chang, T. Y.

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Cheng, C. J.

Christian, W.

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Curtis, K.

K. Curtis, C. Gu, D. Psaltis, “Cross-talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, “Cross talk in phase-coded holographic memories,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).
[CrossRef]

K. Curtis, AT&T Bell Labs, Murray Hill, N.J. 07974 (personal communication, 1995).

A. Pu, K. Curtis, D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE/LEOS 1994 (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 433–435.

Denz, C.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Dube, R. R.

Fainman, Y.

Gregory, D. A.

Gu, C.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages using phase code multiplexing in volume holography,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 427–429.
[CrossRef]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages using phase code multiplexing in volume holography,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 427–429.
[CrossRef]

Hill, B.

B. Hill, “Holographic memories and their future,” in Advances in Holography, N. H. Farhat, ed. (Dekker, New York and Basel, 1976), Vol. 3, pp. 1–251.

Hong, J.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Hsu, K. Y.

Ito, F.

K. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

Khoshnevisan, M.

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Kitayama, K.

K. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

Lee, S. H.

Lembcke, J.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

Leyva, V.

Lin, S. H.

Lin, S.-H.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).

Ma, J.

Ma, T. P.

Mayers, A.

McDonald, M.

McMichael, I.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Mok, F.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992).
[CrossRef]

G. Burr, F. Mok, D. Psaltis, “Angle and spatially multiplexed holographic memory using the 90 deg. geometry,” presented at the 1994 OSA Annual Meeting, Dallas, Tex., October 1994, paper Tu-H6.

Mok, F. H.

Mroczkowski, S.

Neifeld, M. A.

Neurogaonkar, R.

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

Pappu, S. V.

S. V. Pappu, “Holographic memories: a critical review,” Int. J. Optoelectron. 5, 251–292 (1990).

Pauliat, G.

C. Alves, G. Pauliat, G. Roosen, “Dynamic phase-encoding storage of 64 images in BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894–1896 (1994).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Psaltis, D.

K. Curtis, C. Gu, D. Psaltis, “Cross-talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, “Cross talk in phase-coded holographic memories,” J. Opt. Soc. Am. A 10, 2547–2550 (1993).
[CrossRef]

Y. Qiao, D. Psaltis, “Sampled dynamic holographic memory,” Opt. Lett. 17, 1376–1378 (1992).
[CrossRef] [PubMed]

G. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of large scale holographic memories,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 148–151.

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 18 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

A. Pu, K. Curtis, D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE/LEOS 1994 (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 433–435.

G. Burr, F. Mok, D. Psaltis, “Angle and spatially multiplexed holographic memory using the 90 deg. geometry,” presented at the 1994 OSA Annual Meeting, Dallas, Tex., October 1994, paper Tu-H6.

Pu, A.

A. Pu, K. Curtis, D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE/LEOS 1994 (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 433–435.

Qiao, Y.

Rakuljic, G. A.

Roosen, G.

C. Alves, G. Pauliat, G. Roosen, “Dynamic phase-encoding storage of 64 images in BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894–1896 (1994).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Sasaki, H.

Sauer, J. R.

D. J. Blumenthal, J. R. Sauer, “Multiwavelength logic gates with high computational efficiency,” in Optical Computing, Vol. 7 of 1993 Technical Digest Series (Optical Society of America, Washington, D. C., 1993), p. 64; P. Yeh, S. Campbell, S. Zhou, “Optical implementation of a multiwavelength half adder,” Opt. Lett. 18, 903–905 (1993).
[CrossRef] [PubMed]

Saxena, R.

Sincerbox, G. T.

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

Song, Q.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stoll, H. M.

Tackitt, M. C.

Taketomi, Y.

Tschudi, T.

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Wu, S.

Yang, Z.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yariv, A.

Yeh, P.

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
[CrossRef] [PubMed]

X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
[CrossRef] [PubMed]

X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
[CrossRef] [PubMed]

C. Gu, P. Yeh, “Diffraction properties of fixed gratings in photorefractive media,” J. Opt. Soc. Am. B 7, 2339–2345 (1990).
[CrossRef]

P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26, 602–604 (1987).
[CrossRef] [PubMed]

S. Campbell, Y. Zhang, P. Yeh, “Material limitations in volume holographic copying,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1995), paper OMC15; S. Campbell, P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 128–131.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).

S. Campbell, X. Yi, P. Yeh, “Sparse-wavelength angularly multiplexed volume holographic memory,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 225–227.

S. Campbell, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, Francis T. S. Yu, ed., Proc. SPIE2529, pp. 134–144 (1995).

Yi, X.

X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
[CrossRef] [PubMed]

X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
[CrossRef] [PubMed]

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).

S. Campbell, X. Yi, P. Yeh, “Sparse-wavelength angularly multiplexed volume holographic memory,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 225–227.

Yin, S.

F. T. S. Yu, F. Zhao, H. Zhou, S. Yin, “Cross-talk in a wavelength-multiplexed reflection-type photorefractive fiber hologram,” Opt. Lett. 18, 1849–1851 (1993).
[CrossRef] [PubMed]

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yu, F. T. S.

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhang, Y.

S. Campbell, Y. Zhang, P. Yeh, “Material limitations in volume holographic copying,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1995), paper OMC15; S. Campbell, P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 128–131.

Zhao, F.

Zhou, H.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Int. J. Optoelectron. (1)

S. V. Pappu, “Holographic memories: a critical review,” Int. J. Optoelectron. 5, 251–292 (1990).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, F. T. S. Yu, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume holographic multiplexing using a deterministic phase encoding technique,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Lett. (14)

S. Campbell, P. Yeh, C. Gu, S. H. Lin, C. J. Cheng, K. Y. Hsu, “Optical restoration of photorefractive holograms through self-enhanced diffraction,” Opt. Lett. 20, 330–332 (1995).
[CrossRef] [PubMed]

M. A. Neifeld, “Multiple-error-correcting codes for improving the performance of optical matrix–vector processors,” Opt. Lett. 20, 758–760 (1995).
[CrossRef] [PubMed]

F. H. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702– 4707 (1991).
[CrossRef] [PubMed]

Y. Qiao, D. Psaltis, “Sampled dynamic holographic memory,” Opt. Lett. 17, 1376–1378 (1992).
[CrossRef] [PubMed]

H. Sasaki, J. Ma, Y. Fainman, S. H. Lee, Y. Taketomi, “Fast update of photorefractive optical memory,” Opt. Lett. 17, 1468–1470 (1992).
[CrossRef] [PubMed]

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

K. Curtis, C. Gu, D. Psaltis, “Cross-talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
[CrossRef] [PubMed]

F. T. S. Yu, F. Zhao, H. Zhou, S. Yin, “Cross-talk in a wavelength-multiplexed reflection-type photorefractive fiber hologram,” Opt. Lett. 18, 1849–1851 (1993).
[CrossRef] [PubMed]

M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
[CrossRef] [PubMed]

X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994).
[CrossRef] [PubMed]

C. Alves, G. Pauliat, G. Roosen, “Dynamic phase-encoding storage of 64 images in BaTiO3 photorefractive crystal,” Opt. Lett. 19, 1894–1896 (1994).
[CrossRef] [PubMed]

S. Campbell, X. Yi, P. Yeh, “Hybrid sparse-wavelength angularly multiplexed optical data storage system,” Opt. Lett. 19, 2161–2163 (1994).
[CrossRef] [PubMed]

X. Yi, S. Campbell, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory II: image plane holograms,” Opt. Lett. 20, 779–781 (1995).
[CrossRef] [PubMed]

Opt. Mater. (4)

J. Lembcke, C. Denz, T. Tschudi, “General formalism for angular and phase-encoded multiplexing in holographic image storage,” Opt. Mater. 4, 428–432 (1995).
[CrossRef]

J. V. Alvarez-Bravo, N. Bolognini, L. Arizmendi, “Cross-talk in multiplexed holograms using angular selectivity in LiNbO3,” Opt. Mater. 4, 414–418 (1995).
[CrossRef]

K. Kitayama, F. Ito, “Holographic memory using long photorefractive fiber array,” Opt. Mater. 4, 392–398 (1995).
[CrossRef]

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4, 370–375 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (13)

S. Campbell, Y. Zhang, P. Yeh, “Material limitations in volume holographic copying,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1995), paper OMC15; S. Campbell, P. Yeh, “Absorption effects in photorefractive volume holographic memory,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 128–131.

S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume holographic memory systems I: beam depletion,” J. Opt. Soc. Am. B (to be published); “Absorption effects in photorefractive volume holographic memory systems II: material heating,” J. Opt. Soc. Am. B (to be published).

K. Curtis, AT&T Bell Labs, Murray Hill, N.J. 07974 (personal communication, 1995).

A. Pu, K. Curtis, D. Psaltis, “A new method for holographic data storage in photopolymer films,” in IEEE/LEOS 1994 (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 433–435.

G. Burr, F. Mok, D. Psaltis, “Angle and spatially multiplexed holographic memory using the 90 deg. geometry,” presented at the 1994 OSA Annual Meeting, Dallas, Tex., October 1994, paper Tu-H6.

S. Campbell, X. Yi, P. Yeh, “Sparse-wavelength angularly multiplexed volume holographic memory,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 225–227.

S. Campbell, P. Yeh, “Photorefractive volume holographic memory systems: approaches, limitations, and requirements,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, Francis T. S. Yu, ed., Proc. SPIE2529, pp. 134–144 (1995).

D. J. Blumenthal, J. R. Sauer, “Multiwavelength logic gates with high computational efficiency,” in Optical Computing, Vol. 7 of 1993 Technical Digest Series (Optical Society of America, Washington, D. C., 1993), p. 64; P. Yeh, S. Campbell, S. Zhou, “Optical implementation of a multiwavelength half adder,” Opt. Lett. 18, 903–905 (1993).
[CrossRef] [PubMed]

G. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of large scale holographic memories,” in Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 148–151.

B. Hill, “Holographic memories and their future,” in Advances in Holography, N. H. Farhat, ed. (Dekker, New York and Basel, 1976), Vol. 3, pp. 1–251.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Recall of linear combinations of stored data pages using phase code multiplexing in volume holography,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 427–429.
[CrossRef]

I. McMichael, W. Christian, J. Hong, T. Y. Chang, R. Neurogaonkar, M. Khoshnevisan, “Compact volume holographic memory system with rapid acoustooptic addressing,” in 1994 IEEE Nonlinear Optics: Materials, Fundamentals, and Applications (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 424–426.
[CrossRef]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 18 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic for SWAM VHM: F, input multiplexed beam plane; SLM, spatial light modulator utilized to encode object beams during storage; Obj, object-beam path; Ref, reference-beam path; L, lens to be included or omitted, depending on desired incidence geometry; 2θ, full external beam angle; VHM, volume holographic memory; CCD, charge-coupled device (output-plane detector array); PC, personal computer accessing memory. Plane F is imaged to the SLM and to a free-space reference plane; they are in turn imaged into the VHM. Output beams can be spectrally separated because the wavelengths utilized are sparsely spaced.

Fig. 2
Fig. 2

Incidences: (a) symmetric incidence, (b) asymmetric incidence, (c) standard incidence, and (d) beam and grating space diagram to define the allowable Δθ (multiplexing span) for a given δλ. When the reference beam R j ±1 is Bragg matched with the grating written by the reference–object-beam pair R j , O j , overlap occurs (span cross talk begins). β is defined as in (a)–(c).

Fig. 3
Fig. 3

Internal angular span as a function of wavelength separation [plot of Eq. (2)].

Fig. 4
Fig. 4

Angle and wavelength selectivity as a function of the internal full beam angle [plot of Eqs. (3)]. Angular regions accessible to the outside world are indicated according to beam entry faces.

Fig. 5
Fig. 5

Information throughput (bits per second) as a function of the total number of stored holograms N for device-limited address times of 100 μs [plot of Eq. (6)]. Modern magnetic memory is limited to approximately 100-Mbit/s data rates (not counting initial access delays).

Fig. 6
Fig. 6

Studies of photovoltaic screening: (a) interferogram of a fresh VHM, (b) the same VHM but after 10τ of illumination, indicating phase degradations brought on by photovoltaic screening, and (c) recalled plane wave from (b) indicating amplitude degradations brought on by photovoltaic screening.

Fig. 7
Fig. 7

Experimental results from the storage of 2,000 holographic pages that utilized five wavelengths and 400 angles: (a) λ1 = 457.9 nm, θ1 = 43.50°; (b) λ2 = 476.5 nm, θ100 = 44.25°; (c) λ3 = 488.0 nm, θ200 = 45.00°; (d) λ4 = 501.7 nm, θ300 = 45.75°; and (e) λ5 = 514.5 nm, θ400 = 46.50°. Then (f) shows a magnification of (c) to indicate our achieved resolution of ~128 pixels per millimeter (group six, element one). The defects in the large bar set to the far right are due to the SLM, not the VHM.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N = N λ N θ = ( Δλ δλ + 1 ) ( Δθ δθ + 1 ) .
Δ = Δ x = sin 1 ( λ j ± 1 n j λ j n j ± 1 sin θ j ) θ j
λ δλ S = n L λ ( 1 cos 2 θ int ) ( per radian ) ,
1 δθ S = n L λ sin ( 2 θ int ) ( per radian ) ,
ρ b = N b a V ,
I D = I v f ( N ) ,
t i = N e ( h v s η q ) ( 1 I D ) = [ N e f ( N ) ] ( h v s η q I v ) ,
I T = N λ b a t i + t a = N λ b a [ N e f ( N ) ] ( h v s η q I v ) + t a ,
I τ v α × 10 15 ,

Metrics