Abstract

The design and the realization of an advanced precision optical test stand for evaluating materials and developing tools and techniques for holographic digital data storage are described. This apparatus allows studies of holographic recording materials and recording physics to be performed in the context of practical data storage. The system concept, its implementation, and its performance are described, and examples of holographic storage in photorefractive materials are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principal,” Nature (London) 161, 777–778 (1948); “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London Ser.A 197, 454–487 (1949).
    [CrossRef]
  2. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  3. L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
    [CrossRef]
  4. G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.
  5. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  6. F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
    [CrossRef]
  7. G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
  8. A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).
  9. W. Moerner, S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
    [CrossRef]
  10. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  11. G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degrees geometry,” Opt. Commun. 117, 49–55 (1995).
    [CrossRef]
  12. J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  13. C. D. Mee, E. D. Daniel, eds., Magnetic Recording Handbook (McGraw-Hill, New York, (1990).
  14. L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
    [CrossRef]
  15. K.-Y. Tu, T. Tamir, “Wave diffraction by many superposed volume gratings,” Appl. Opt. 32, 3654–3660 (1993).
    [CrossRef] [PubMed]
  16. G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  17. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  18. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  19. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–995 (1994).
    [CrossRef] [PubMed]
  20. Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).
  21. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  22. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993); M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1−xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993).
    [CrossRef] [PubMed]
  23. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971); D. L. Staebler, J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
    [CrossRef]
  24. D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  25. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef] [PubMed]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.
  27. K. Blotekjaer, “Limitations on holographic storage capacity in photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [CrossRef] [PubMed]
  28. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  29. S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
    [CrossRef] [PubMed]
  30. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  31. G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
    [CrossRef]
  32. K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
    [CrossRef]
  33. G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
    [CrossRef]
  34. R. L. Townsend, J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970); J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
    [CrossRef] [PubMed]
  35. B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
    [CrossRef] [PubMed]

1995 (2)

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degrees geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

1994 (6)

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–995 (1994).
[CrossRef] [PubMed]

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

W. Moerner, S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

1993 (4)

1992 (1)

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

1991 (2)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

1986 (1)

G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
[CrossRef]

1983 (1)

G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).

1979 (1)

K. Blotekjaer, “Limitations on holographic storage capacity in photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef] [PubMed]

1977 (1)

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

1975 (1)

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1973 (1)

L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971 (2)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971); D. L. Staebler, J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

1970 (2)

R. L. Townsend, J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970); J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
[CrossRef] [PubMed]

C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
[CrossRef] [PubMed]

1968 (1)

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

1963 (1)

1948 (1)

D. Gabor, “A new microscopic principal,” Nature (London) 161, 777–778 (1948); “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London Ser.A 197, 454–487 (1949).
[CrossRef]

Amodei, J.

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971); D. L. Staebler, J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Barbastathis, G.

Bashaw, M.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Bernal, M.-P.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Bismuth, G.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Bjorklund, G. C.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

Blotekjaer, K.

K. Blotekjaer, “Limitations on holographic storage capacity in photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef] [PubMed]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Burckhardt, C. B.

Burke, W.

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Burr, G. W.

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degrees geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Coufal, H.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Curtis, K.

D’Auria, L.

L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
[CrossRef]

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Frazer, D. B.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Furuhata, Y.

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principal,” Nature (London) 161, 777–778 (1948); “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London Ser.A 197, 454–487 (1949).
[CrossRef]

Glass, A.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Glass, A. M.

G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.

Grygier, R. K.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Günter, P.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Heanue, J.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Hoffnagle, J. A.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Huignard, J.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Huignard, J. P.

L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
[CrossRef]

Jefferson, C. M.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Jia, Y.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Klein, M.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Klein, M. B.

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).

Kobayashi, M.

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

Kozuka, H.

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

Krätzig, E.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Kukhtarev, N.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

La Macchia, J. T.

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Lam, J.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

LaMacchia, J. T.

R. L. Townsend, J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970); J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
[CrossRef] [PubMed]

Levene, M.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Leyva, V.

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

Macfarlane, R. M.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Megumi, K.

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

Micheron, F.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Moerner, W.

W. Moerner, S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

Moerner, W. E.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Mok, F.

Mok, F. H.

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degrees geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Mullen, R.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Negran, T. J.

G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Nelson, C. C.

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993); M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1−xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993).
[CrossRef] [PubMed]

G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
[CrossRef]

Orlov, S.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Peterson, G. E.

G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Petrov, M.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Peyghambarian, N.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Phillips, W.

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Poga, C.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Psaltis, D.

Pu, A.

Qiao, Y.

Rakuljic, G.

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

Rakuljic, G. A.

G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
[CrossRef]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Schimer, O.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Schwartz, R. N.

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Shelby, R. M.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Silence, S.

W. Moerner, S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

Silence, S. M.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

Sincerbox, G.

G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.

Sincerbox, G. T.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Spitz, E.

L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
[CrossRef]

Staebler, D.

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971); D. L. Staebler, J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

Stepanov, S.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Strait, J.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Tamir, T.

Townsend, R. L.

R. L. Townsend, J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970); J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
[CrossRef] [PubMed]

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Tu, K.-Y.

Twieg, R. J.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Valley, G.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

Valley, G. C.

G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).

van Heerden, P. J.

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Wechsler, B. A.

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

Wimmer, P.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Wittmann, G.

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

Yariv, A.

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
[CrossRef]

Appl. Opt. (1)

K. Blotekjaer, “Limitations on holographic storage capacity in photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979); E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. Staebler, W. Burke, W. Phillips, J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

F. S. Chen, J. T. La Macchia, D. B. Frazer, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971); D. L. Staebler, J. J. Amodei, “Thermally fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

G. E. Peterson, A. M. Glass, T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

K. Megumi, H. Kozuka, M. Kobayashi, Y. Furuhata, “High sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631–633 (1977).
[CrossRef]

Chem. Rev. (1)

W. Moerner, S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

IEEE Trans. Magn. (1)

L. D’Auria, J. P. Huignard, E. Spitz, “Holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Magn. Mag-9, 83–94 (1973).
[CrossRef]

J. Appl. Phys. (1)

R. L. Townsend, J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970); J. Feinberg, R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980).
[CrossRef] [PubMed]

Nature (London) (2)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

D. Gabor, “A new microscopic principal,” Nature (London) 161, 777–778 (1948); “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London Ser.A 197, 454–487 (1949).
[CrossRef]

Opt. Commun. (2)

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90 degrees geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Eng. (1)

G. C. Valley, M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).

Opt. Lett. (2)

B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
[CrossRef] [PubMed]

G. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

Opt. Eng. (1)

G. A. Rakuljic, A. Yariv, R. R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal St0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986); R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, E. J. Sharp, M. J. Miller, W. W. Clark, G. L. Wood, G. J. Salamo, “Cr3+:Sr0.6Ba0.4Nb2 O6 single crystals for photorefractive applications,” Mater. Res. Bull. 24, 589–594 (1989).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasi-nondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Science (1)

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (5)

C. D. Mee, E. D. Daniel, eds., Magnetic Recording Handbook (McGraw-Hill, New York, (1990).

Y. Jia, C. Poga, W. E. Moerner, R. J. Twieg, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “Holographic data storage in a liquid 3-fluoro-4-N,N diethylaminomethyl-β-nitrostyrene/poly(vinylcarbazgola) system,” Opt. Lett. (submitted).

G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.

A. Glass, P. Günter, J. Huignard, M. Klein, E. Krätzig, N. Kukhtarev, J. Lam, R. Mullen, M. Petrov, O. Schimer, S. Stepanov, J. Strait, G. Valley, Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin Heidelberg New York, London, Paris, Tokyo, 1988).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the optical layout of the holographic storage tester. Laser light is delivered to the apparatus by a polarization-maintaining optical fiber and is split into the object beam (solid line) and the reference beam (dashed line) by the beam splitter (BS). The intensity of each beam is controlled by a rotatable half-wave plate (λ/2) and polarizing beam splitter (P). The intensities are monitored by the detectors (D’s) and admitted to the rest of the setup by mechanical shutters (S’s). The rest of the object-beam path is raised 2.75 in. (6.98 cm) by the periscope prism (PP) and expanded by a 20× beam expander (BE). The 15-mm square aperture (A) selects the center of the beam, producing a top-hat beam profile. The digital data images to be recorded are on the data mask (MA), which is imaged through the sample under test (SA) and onto the CCD camera (C) by the two Fourier transform lenses (L1 and L2). For best imaging, the effective optical path between the two lenses is adjusted with fused silica compensator plates (CP’s) (the number of CP’s varies by experiment; only one is shown here). The reference beam is expanded to a suitable diameter (typically 2–8 mm) by a telescope (T) and sent on a path parallel to the object beam but 2.75 in. below it after reflecting from a right-angle turning prism (TP). The side view in the inset at lower right shows the reference-beam path more clearly. The mirror (M) is located on the Θ stage and the Dove prism (DP) on the 2Θ stage (see Fig. 2). Together they direct the reference beam through the sample at an angle that is varied by the simultaneous adjustment of Θ and 2Θ. The polarizations of both beams are controlled by liquid-crystal Senarmont polarization rotators (R’s).

Fig. 2
Fig. 2

The mirror (M) and the Dove prism (DP) are mounted on precision concentric rotation stages. The incoming reference beam (from lower right) reflects from the mirror, adjusted with its normal at angle Θ with respect to the incoming beam and is deflected into the Dove prism, which is positioned at 2Θ. The Dove prism raises the beam path and directs the beam through the sample (S), where it intersects with the object beam.

Fig. 3
Fig. 3

Overall view of the holographic storage tester. The tower, CCD camera (cam), sample (smpl), data mask (mask), and Θ/2Θ stage are indicated.

Fig. 4
Fig. 4

Image of a 256-kbit mask, which demonstrates the performance of the optical system. (a) Schematic diagram of chrome-on-glass mask used to record this image. The mask consists of a 512 × 512 array of 9-μm square apertures spaced 18 μm apart. Approximately half of the apertures (randomly selected) are open, corresponding to binary 1, and the remaining ones are opaque, corresponding to binary 0. The row indicated with arrows corresponds to the data shown in the enlarged section of (b) below. (b) Cross section of the image, corresponding to the data from a single 512-pixel row of the CCD camera. The enlargement shows an expanded version of a portion of the data. (c) A histogram showing the distribution of image intensities for this image. Each value in this graph corresponds to the number of CCD pixels within a small interval of a given intensity. The distributions of 1’s and 0’s are well separated because of the excellent contrast and nearly perfect magnification and alignment of the optical system.

Fig. 5
Fig. 5

Image of a 1024-kbit mask. (a) Schematic diagram of the chrome-on-glass mask used to record this image. The mask consists of a 1024 × 1024 array of 4.5-μm square apertures spaced 9 μm apart. As in Fig. 4, approximately half of the apertures are open, or binary 1. The row indicated with arrows corresponds to the data shown in the enlarged section of (b) below. (b) Cross section of the image, corresponding to the data from a single 1024-pixel row of the CCD camera. The enlarged section shows an expanded version of a portion of the data. (c) A histogram showing the distribution of image intensities for this image. Each value in this graph corresponds to the number of CCD pixels within a small interval of a given intensity. The distributions of 1’s and 0’s are sufficiently well separated to permit complete resolution of all 1’s and 0’s, even at this very high data resolution.

Fig. 6
Fig. 6

Histogram of the 1-Mbit image in Fig. 5. Prior knowledge of the input data allows the distribution of intensities for 0’s and 1’s to be plotted separately (shown as open and filled symbols, respectively; see legend). The high-intensity tail of the 0’s (open circles) and the low-intensity tail of the 1’s (filled circles) are fitted to Gaussian functions, as shown by the solid curves. The calculated overlap of these fitted Gaussians yields an estimate for the BER of this image of 4 × 10−7. ADC, analog-to-digital converter.

Fig. 7
Fig. 7

Estimated BER for a 256-kbit data page is shown as a function of camera misalignment; the misalignment was produced by translation in the plane of the image by the amount shown on the x axis of the plot. The BER rises rapidly by many orders of magnitude for only small misalignments. This emphasizes the precision of alignment needed to record and read out high-density data pages by the use of holographic techniques.

Fig. 8
Fig. 8

Image formed from a reconstructed hologram of the 256-kbit data page shown in Fig. 4. This hologram was recorded by a 5-s exposure in LiNbO3:Fe at an average reference-beam power of ~0.1 W/cm2 and object-beam power of 3 mW/cm2. The total diffraction efficiency of this hologram was η = 5 × 10−7 whereas the diffraction efficiency of a single 1 is ηpixel = 4 × 10−12. The reading power was 50 mW and the read time was 150 ms. (a) Cross section of hologram image, corresponding to data from a single 512-pixel row of the CCD camera. (b) Histogram of this hologram showing the distribution of image intensities. In this case the tails of the distributions of the 1’s (filled symbols) and the 0’s (open symbols) overlap slightly, as shown by the fits to the Gaussian tails of the distributions (solid curves fitted to open and filled circles; see legend). A calculation of the overlap area of the fitted Gaussian yields a predicted BER of 1 × 10−5. Selection of the best threshold value for detection of 1’s for this hologram yields five errors, i.e., a BER of 2 × 10−5, in good agreement with the value predicted from the fit. All the errors are located in one corner of the image, as might be expected, because the Fourier lens distortions are expected to be greatest in the corners. ADC, analog-to-digital converter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ Θ = λ / l sin ( Θ ) ,
S η 1 = 1 α l ( η 1 / 2 ) w 0 ,

Metrics