Abstract

Using a simple ellipsometric technique, we measure the total refractive-index modulation as a function of the frequency of the applied electric field in low glass-transition-temperature photorefractive polymer composites. From these measurements we deduce the relative contributions of the poling birefringence and the Pockels and Kerr effects. By applying the oriented gas model we determine the microscopic properties of the nonlinear optical chromophore, including the anisotropic polarizability, and the first and the second hyperpolarizabilities. In the search for new high-performance materials, the technique provides a measure of the linear and the second- and third-order nonlinear optical properties simultaneously.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
    [CrossRef]
  2. B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
    [CrossRef]
  3. M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
    [CrossRef] [PubMed]
  4. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  5. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  6. B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
    [CrossRef]
  7. C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
    [CrossRef]
  8. J. P. Huignard, P. Günter, “Optical processing using wave mixing in photorefractive crystals,” in Photorefractive Materials and Their Applications, P. Günter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Vol. II, pp. 205–273.
    [CrossRef]
  9. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  10. M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
    [CrossRef]
  11. C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
    [CrossRef]
  12. J. S. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [CrossRef] [PubMed]
  13. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 10, pp. 411–413.
  14. B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
    [CrossRef]
  15. L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
    [CrossRef]
  16. J. Mort, “Polymers as electronic materials,” Adv. Phys. 29, 367–408 (1980).
    [CrossRef]
  17. D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Molecular Nonlinear Optics: Materials, Physics, and Devices, J. Zyss, ed. (Academic, Boston, 1994), pp. 405–409.
  18. K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  19. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. B 8, 142–152 (1991).
    [CrossRef]
  20. D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
    [CrossRef]
  21. B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
    [CrossRef]
  22. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
    [CrossRef]
  23. N. Matsuzawa, D. A. Dixon, “Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment,” J. Phys. Chem. 96, 6232–6241 (1992).
    [CrossRef]

1995 (3)

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
[CrossRef]

C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
[CrossRef]

1994 (5)

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

1993 (3)

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

1992 (1)

N. Matsuzawa, D. A. Dixon, “Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment,” J. Phys. Chem. 96, 6232–6241 (1992).
[CrossRef]

1991 (3)

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. B 8, 142–152 (1991).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

1990 (2)

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

J. S. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
[CrossRef] [PubMed]

1987 (1)

1980 (1)

J. Mort, “Polymers as electronic materials,” Adv. Phys. 29, 367–408 (1980).
[CrossRef]

Bao, Z.

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

Bjorklund, G. C.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 10, pp. 411–413.

Burland, D. M.

D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

Cao, S. X. F.

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

Chan, W.

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

Cheng, L.-T.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Dixon, D. A.

N. Matsuzawa, D. A. Dixon, “Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment,” J. Phys. Chem. 96, 6232–6241 (1992).
[CrossRef]

Ducharme, S.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Goonesekera, A.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Günter, P.

J. P. Huignard, P. Günter, “Optical processing using wave mixing in photorefractive crystals,” in Photorefractive Materials and Their Applications, P. Günter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Vol. II, pp. 205–273.
[CrossRef]

Hache, F.

Hall, H. K.

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

Halvorson, C.

Heeger, A. J.

Huignard, J. P.

J. P. Huignard, P. Günter, “Optical processing using wave mixing in photorefractive crystals,” in Photorefractive Materials and Their Applications, P. Günter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Vol. II, pp. 205–273.
[CrossRef]

Jones, B. E.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Kippelen, B.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Kraabel, B.

Kukhtarev, N. V.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

Kuzyk, M. G.

Liphardt, M.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Lyon, S. R.

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Man, H. T.

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Matsuzawa, N.

N. Matsuzawa, D. A. Dixon, “Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment,” J. Phys. Chem. 96, 6232–6241 (1992).
[CrossRef]

Meerholz, K.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Meredith, G. R.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

Moerner, W. E.

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Mort, J.

J. Mort, “Polymers as electronic materials,” Adv. Phys. 29, 367–408 (1980).
[CrossRef]

Orczyk, M. E.

M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
[CrossRef]

Padias, A. B.

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

Peyghambarian, N.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Prasad, P. N.

M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
[CrossRef]

Runser, C.

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Sandalphon,

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Schildkraut, J. S.

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Silence, S. M.

Singer, K. D.

Sohn, J. E.

Stevenson, S. H.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Takacs, J. M.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Tam, W.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Tamura, K.

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

Teng, C. C.

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Twieg, R. J.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Volodin, B.

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Volodin, B. L.

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

C. Halvorson, B. Kraabel, A. J. Heeger, B. L. Volodin, K. Meerholz, Sandalphon, N. Peyghambarian, “Optical computing by use of photorefractive polymers,” Opt. Lett. 20, 76–79 (1995).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

Williams, D. J.

D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Molecular Nonlinear Optics: Materials, Physics, and Devices, J. Zyss, ed. (Academic, Boston, 1994), pp. 405–409.

Wu, J. W.

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. B 8, 142–152 (1991).
[CrossRef]

Yu, L.

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

Zhang, L.

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Zieba, J.

M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
[CrossRef]

Adv. Phys. (1)

J. Mort, “Polymers as electronic materials,” Adv. Phys. 29, 367–408 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. E. Orczyk, J. Zieba, P. N. Prasad, “Nonelectrooptic nonlocal photorefractive effect in a polymer composite,” Appl. Phys. Lett. 67, 311–313 (1995).
[CrossRef]

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Chem. Rev. (2)

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[CrossRef]

Electron. Lett. (1)

B. Kippelen, Sandalphon, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “New highly efficient photorefractive polymer composite for optical-storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B (1)

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. B 8, 142–152 (1991).
[CrossRef]

J. Phys. Chem. (2)

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

N. Matsuzawa, D. A. Dixon, “Semiempirical calculations of hyperpolarizabilities for donor-acceptor molecules: comparison to experiment,” J. Phys. Chem. 96, 6232–6241 (1992).
[CrossRef]

Macromolecules (1)

L. Yu, W. Chan, Z. Bao, S. X. F. Cao, “Photorefractive polymers. 2. Structure design and property characterization,” Macromolecules 26, 2216–2221 (1993).
[CrossRef]

Nature (London) (1)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Opt. Eng. (1)

B. L. Volodin, Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, N. Peyghambarian, “Highly efficient photorefractive polymers for dynamic holography,” Opt. Eng. 34, 2213–2223 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

B. Kippelen, K. Tamura, N. Peyghambarian, A. B. Padias, H. K. Hall, “Photorefractivity in a functional side-chain polymer,” Phys. Rev. B 48, 10710–10718 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Science (1)

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
[CrossRef] [PubMed]

Other (4)

J. P. Huignard, P. Günter, “Optical processing using wave mixing in photorefractive crystals,” in Photorefractive Materials and Their Applications, P. Günter, J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Vol. II, pp. 205–273.
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), Chap. 10, pp. 411–413.

D. J. Williams, “Nonlinear optical properties of guest–host polymer structures,” in Molecular Nonlinear Optics: Materials, Physics, and Devices, J. Zyss, ed. (Academic, Boston, 1994), pp. 405–409.

B. Kippelen, C. Runser, K. Meerholz, Sandalphon, B. Volodin, N. Peyghambarian, “Photoconducting polymers for photorefractive nonlinear optics,” in Eighth International Symposium on Electrets, J. Lewiner, D. Morisseau, C. Alquié, eds. (IEEE Service Center, New Jersey, 1994), pp. 781–786.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the formation of a refractive-index grating (Δn) in a photorefractive material when illuminated by a light-intensity (I) grating. The intermediate steps show the buildup of a space-charge distribution (q sc), and the resulting space-charge electric field (E sc). Horizontal dashed lines display the zero ordinates. Note the phase shift (vertical dashed lines) between the peaks of the index grating with respect to the intensity grating.

Fig. 2
Fig. 2

Linear absorption spectra for thin films of DMNPAA:PVK:ECZ:TNF and F-DEANST:PVK:ECZ:TNF in the visible and the near-ultraviolet ranges. The spectra show absorption peaks at 398 and 439 nm for the DMNPAA and the F-DEANST chromophores, respectively.

Fig. 3
Fig. 3

Chemical strucures of the molecular components of the photorefractive polymer composites: (a) DMNPAA, (b) F-DEANST, (c) ECZ, and (d) PVK:TNF complex. Their functionalities are described in the text.

Fig. 4
Fig. 4

Experimental setup: LD, laser diode; WP, half-wave plate; PBS’s, polarizing beam splitters; SBC, Soleil–Babinet compensator; HV, high-voltage power amplifier; FG, function generator; Det, detector. The inset shows a plot of the transmitted intensity versus the relative phase shift, ψsp + ψSB, between the s and the p polarizations after the transmitted intensity passes through the sample and the SBC.

Fig. 5
Fig. 5

(a) Response functions R(Ω) and R(2Ω) measured for the DMNPAA:PVK:ECZ:TNF composite as a function of the applied field frequency Ω at 690 nm, and (b) response functions R(Ω) and R(2Ω) measured for the DMNPAA:PVK:ECZ:TNF composite as a function of the applied field frequency Ω at 830 nm.

Fig. 6
Fig. 6

Response functions R(Ω) and R(2Ω) measured for the F-DEANST:PVK:ECZ:TNF composite as a function of the applied field frequency Ω at 690 nm.

Fig. 7
Fig. 7

Ratio of the response functions R(Ω) and R(2Ω) measured for the DMNPAA:PVK:ECZ:TNF composite as a function of the applied field frequency Ω at 690 and 830 nm.

Tables (1)

Tables Icon

Table 1 Molecular Constants of the NLO Molecule

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I t = I i sin 2 ( ψ sp + ψ SB 2 ) ,
I m δψ sp I i 2 sin ( ψ sp + ψ SB ) .
I m ( I i / 2 ) δψ sp .
ψ sp = ψ p ψ s = ( 2 π d λ ) [ n p cos ( α p ) n s cos ( α s ) ] ,
1 n p 2 = sin 2 ( α p ) n e 2 + cos 2 ( α p ) n o 2 .
δψ sp = ψ sp n o Δ n o + ψ sp n e Δ n e .
δψ sp = 2 π d λ G | Δ n e Δ n o | = 2 π n 3 d r 33 E AC 3 λ G ,
r 33 = I m 3 λ G I i π n 3 V AC ,
Δ n o , e = 2 π n ( B o , e E p 2 + 2 C o , e E p E T + 3 D o , e E T 2 ) ,
B e = 2 45 N f Δ α ( μ k T ) 2 , B o = B e 2 ,
C e = N f 0 f 2 βμ 5 k T , C o = C e 3 ,
D e = N f 0 2 f 2 γ 5 , D o = D e 3 ,
Δ n o , e LF = 2 π n ( B o , e + 2 C o , e + 3 D o , e ) [ E B 2 + 2 E B E AC sin ( 2 π Ω t ) + E AC 2 sin 2 ( 2 π Ω t ) ] ,
Δ n e LF ( Ω ) Δ n o LF ( Ω ) = 2 π n ( 3 2 B e + 4 3 C e + 2 D e ) × [ 2 E B E AC sin ( 2 π Ω t ) ] .
I m LF ( Ω ) = 4 π 2 d I i λ G n E B E AC ( 3 2 B e + 4 3 C e + 2 D e ) .
I m LF ( 2 Ω ) = π 2 d I i λ G n E AC 2 ( 3 2 B e + 4 3 C e + 2 D e ) .
I m HF ( Ω ) = 4 π 2 d I i λ G n E B E AC ( 2 3 C e + 2 D e ) ,
I m HF ( 2 Ω ) = π 2 d I i λ G n E AC 2 ( 2 D e ) ,
I m LF ( Ω ) I m LF ( 2 Ω ) = 4 E B E AC ( low-frequency limit ) ,
I m HF ( Ω ) I m HF ( 2 Ω ) = 4 E B E AC ( 1 + C e 3 D e ) ( high-frequency limit ) .
R ( Ω ) = I m ( Ω ) 3 λ G d / I i π n 3 V B V AC ,

Metrics