Abstract

The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm−1 and absorption coefficients between 0.002 and 0.1 mm−1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex υiυ o at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
  2. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chaps. 7 and 9.
  4. B. C. Wilson, “Measurement of tissue optical properties: methods and theory,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 233–274.
  5. W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  6. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
  7. A. Kienle, R. Hibst, R. Steiner, “The use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).
  8. L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).
  9. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  10. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
  11. G. Yoon, D. N. Ghosh Roy, R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).
  12. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  13. R. A. Bolt, J. J. ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt. 32, 4641–4645 (1993).
  14. R.A. Bolt, J. J. ten Bosch, “On the determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).
  15. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.
  16. R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).
  17. M. Dogariu, T. Asakura, “Reflectance properties of finite-size turbid media,” Waves Random Media 4, 429–439 (1994).
  18. A. Kienle, “Lichtausbreitung in biologischem Gewebe,” Ph.D dissertation (University of Ulm, Germany, 1994).
  19. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
  20. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).
  21. L. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).
  22. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissue using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
  23. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
  24. L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).
  25. D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).
  26. B. C. Wilson, M. S. Patterson, B. W. Pogue, “Instrumentation for in vivo tissue spectroscopy and imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1993).
  27. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
  28. A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

1995 (1)

1994 (3)

R.A. Bolt, J. J. ten Bosch, “On the determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

M. Dogariu, T. Asakura, “Reflectance properties of finite-size turbid media,” Waves Random Media 4, 429–439 (1994).

1993 (4)

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).

G. Yoon, D. N. Ghosh Roy, R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).

R. A. Bolt, J. J. ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt. 32, 4641–4645 (1993).

1992 (2)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).

1991 (3)

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).

1990 (1)

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

1989 (3)

1983 (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).

1981 (1)

L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).

Asakura, T.

M. Dogariu, T. Asakura, “Reflectance properties of finite-size turbid media,” Waves Random Media 4, 429–439 (1994).

Beek, J. F.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

Berndt, K. W.

Bolin, F. P.

Bolt, R. A.

Bolt, R.A.

R.A. Bolt, J. J. ten Bosch, “On the determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).

Cambell, J. W.

L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).

Cerussi, A. E.

Chance, B.

Cheong, W.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Chuang, C. H.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Dogariu, M.

M. Dogariu, T. Asakura, “Reflectance properties of finite-size turbid media,” Waves Random Media 4, 429–439 (1994).

Fantini, S.

Farrell, T. J.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

Ference, R. J.

Fishkin, J. B.

Franceschini, M. A.

Ghosh Roy, D. N.

Gratton, E.

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).

Gutsche, A.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).

Hibst, R.

A. Kienle, R. Hibst, R. Steiner, “The use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

How, T.

L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chaps. 7 and 9.

Jacques, S. L.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

L. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

Kienle, A.

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

A. Kienle, “Lichtausbreitung in biologischem Gewebe,” Ph.D dissertation (University of Ulm, Germany, 1994).

A. Kienle, R. Hibst, R. Steiner, “The use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

Lakowicz, J. R.

Lilge, L.

L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

Littmann, L.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Moulton, J. D.

Nanney, G. A.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Paterson, M. S.

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

Patterson, M. S.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

B. C. Wilson, M. S. Patterson, B. W. Pogue, “Instrumentation for in vivo tissue spectroscopy and imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1993).

Pickering, J. W.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

Pogue, B. W.

B. C. Wilson, M. S. Patterson, B. W. Pogue, “Instrumentation for in vivo tissue spectroscopy and imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1993).

Poole, L. R.

L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).

Prahl, S. A.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Preuss, L. E.

Schwartz, J.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

So, P. T. C.

Splinter, R.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Steiner, R.

A. Kienle, R. Hibst, R. Steiner, “The use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

Sterenborg, H. J. C. M.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

Straight, R. C.

Svenson, R. H.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Tatsis, G. P.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Taylor, R. C.

ten Bosch, J. J.

R.A. Bolt, J. J. ten Bosch, “On the determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).

R. A. Bolt, J. J. ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt. 32, 4641–4645 (1993).

Tittel, F. K.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Tuntelder, J. R.

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

van Gemert, M. J. C.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

van Wieringen, N.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

Venable, D. D.

L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).

Wang, L.

L. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Welch, A. J.

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

Wilson, B. C.

L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).

B. C. Wilson, M. S. Patterson, B. W. Pogue, “Instrumentation for in vivo tissue spectroscopy and imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1993).

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

B. C. Wilson, “Measurement of tissue optical properties: methods and theory,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 233–274.

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).

Yoon, G.

Appl. Opt. (2)

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

L. R. Poole, D. D. Venable, J. W. Cambell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20, 3653–3656 (1981).

Appl. Opt. (6)

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).

IEEE J. Quantum Electron. (1)

W. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

J. Comput. Phys. (1)

D. R. Wyman, M. S. Patterson, B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles,” J. Comput. Phys. 81, 137–150 (1989).

Laser Life Sci. (1)

R. Splinter, G. A. Nanney, L. Littmann, C. H. Chuang, R. H. Svenson, J. R. Tuntelder, G. P. Tatsis, “Monitoring tissue optical characteristics in situ using a CCD camera,” Laser Life Sci. 6, 15–25 (1994).

Lasers Med. Sci. (2)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 2. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991).

Med. Phys. (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissue,” Med. Phys. 10, 824–830 (1983).

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

Phys. Med. Biol. (1)

L. Lilge, T. How, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissue,” Phys. Med. Biol. 38, 215–230 (1993).

Phys. Med. Biol. (1)

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).

Waves Random Media (2)

M. Dogariu, T. Asakura, “Reflectance properties of finite-size turbid media,” Waves Random Media 4, 429–439 (1994).

R.A. Bolt, J. J. ten Bosch, “On the determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).

Other (8)

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, Vol. ISII of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

A. Kienle, “Lichtausbreitung in biologischem Gewebe,” Ph.D dissertation (University of Ulm, Germany, 1994).

A. Kienle, R. Hibst, R. Steiner, “The use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134, 364–371 (1994).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chaps. 7 and 9.

B. C. Wilson, “Measurement of tissue optical properties: methods and theory,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 233–274.

L. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C (Anderson Cancer Center, University of Texas M. P. Anderson Cancer Center, Houston, Texas, 1992).

B. C. Wilson, M. S. Patterson, B. W. Pogue, “Instrumentation for in vivo tissue spectroscopy and imaging,” in Medical Lasers and Systems II, D. M. Harris, C. M. Penney, A. Katzir, eds., Proc. SPIE1892, 132–147 (1993).

A. Kienle, L. Lilge, M. S. Paterson, B. C. Wilson, R. Hibst, R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 212–221 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental arrangement for the measurement of spatially resolved absolute diffuse reflectance. Components are M, mirror; F, neutral-density filter; P1, P2, linear polarizers; O, camera lens; A, aperture. For characterization of the incident laser beam, a second mirror was used to reflect the beam into the detector aperture.

Fig. 2
Fig. 2

Angular distribution of diffusely reflected light as calculated by Monte Carlo simulation for μ s ′ = 1.0 mm−1, μ a = 0.01 mm−1, g = 0.9, and an incident pencil beam. Results are shown for three radial bins: 0–1.5 mm, 1.5–3.0 mm, and 0–0.3 mm. The Lambertian distribution is also shown as a solid curve. Deviation from the Lambertian distribution is greatest for regions close to the source.

Fig. 3
Fig. 3

Spatially resolved diffuse reflectance calculated by Monte Carlo simulations, assuming a Lambertian distribution of emitted light (solid curve) and explicit calculations based on the actual angular distribution (dashed curve). Conditions for the simulations are the same as those in Fig. 2. A pencil beam is used for the incident beam. As shown in (b), the only significant deviation occurs within 0.05 mm of the incident pencil beam.

Fig. 4
Fig. 4

Tests of the similarity relation that use Monte Carlo simulations for spatially resolved reflectance. For (a), μ s ′ = 1.0 mm−1, μ a 5 0.01 mm−1, and g = 0 (short-dashed curve), 0.8 (long-dashed curve), 0.95 (solid curve). The incident beam was 0.4 mm in diameter. Conditions were the same for (b) except that μ s ′ = 0.2 mm−1.

Fig. 5
Fig. 5

Comparison of the spatially resolved diffuse reflectance estimated by Monte Carlo simulation (long-dashed curve) to diffusion-theory calculations for an incident pencil beam. Diffusion theory used a single scatter source (dotted curve), an extended one-dimensional source (short-dashed curve), or a three-dimensional source (solid curve). The optical properties were μ s ′ = 1.0 mm−1, μ a = 0.1 mm−1, and g = 0.9.

Fig. 6
Fig. 6

Comparison of experimental measurements of spatially resolved diffuse reflectance (symbols) for five phantoms to Monte Carlo simulations (solid curves) generated with the true values of μ a and μ s ′. The Monte Carlo simulations were obtained for pencil beams and convolved with the measured incident-beam profile. The optical properties for the five phantoms were μ s ′ = 0.98, μ a = 0.0033 (top curve); μ s ′ = 0.98, μ a = 0.0088; μ s ′ = 0.97, μ a = 0.025; μ s ′ = 0.94, μ a = 0.070; μ s ′ = 0.93, μ a = 0.100 mm−1 (bottom curve). Note that no parameter was fit.

Fig. 7
Fig. 7

Spatially resolved diffuse reflectance measured for chicken breast (short-dashed curve), bovine muscle (long-dashed curve) and bovine liver (solid curve) ex υiυo at 633 nm. No polarizers were used.

Fig. 8
Fig. 8

(a) Spatially resolved diffuse reflectance measured for bovine adipose tissue at 751 nm with the detector polarizer parallel to the source polarizer (short-dashed curve) and with crossed polarizers (long-dashed curve). The solid curve is the result of a Monte Carlo simulation generated with the optical coefficients from the neural network with g 5 0.9. Good agreement between the simulation and the result for crossed polarizers was obtained over the complete distance range. (b) Data obtained as above for bovine muscle at 751 nm. The Monte Carlo simulation agrees well beyond 2 mm, but closer to the source, even the data for crossed polarizers does not match the simulation.

Fig. 9
Fig. 9

Spatially resolved diffuse reflectance for bovine muscle at 751 nm. Measurements were made with the beam incident at 10° with parallel (solid curve) and crossed (dotted curve) polarizers and at 45° with parallel (long-dashed curve) and crossed (short-dashed curve) polarizers.

Tables (4)

Tables Icon

Table 1 Optical Properties Derived when Eq. (1) is Fit to Monte Carlo-Generated Data for μ s ′ = 1.0 mm−1, μ a = 0.01 mm−1 and g = 0.9 a

Tables Icon

Table 2 Estimates of μ a and μ s ′ Obtained by Neural Networks for a Series of Tissue-Simulating Phantoms Compared with True Values Based on Independent Measurements a

Tables Icon

Table 3 Optical Properties of Bovine Muscle at 633 nm Derived from Diffuse Reflectance Measurements at Five Different Locations on the Same Sample

Tables Icon

Table 4 Optical Properties of Different Tissues Ex Vivo at 633 and 751 nm Derived by the Neural Networks from Spatially Resolved Absolute Diffuse Reflectance Measurements a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N := [ ( μ a / μ s ) 1 / 2 ] 1 / 2 × 10 6
R ( ρ ) = a 4 π [ 1 μ t ( μ eff + 1 r 1 ) exp ( μ eff r 1 ) r 1 2 ] + ( 1 μ t + 2 z b ) ( μ eff + 1 r 2 ) exp ( μ eff r 2 ) r 2 2 ,
r 1 = [ ( 1 μ t ) 2 + ρ 2 ] 1 / 2 , r 2 = [ ( 1 μ t + 2 z b ) 2 + ρ 2 ] 1 / 2 , a = μ s / ( μ a + μ s ) ,
S ( z ) = a μ t exp ( μ t z ) ,
S ( ρ, z ) = 9 a μ t 3 2 π exp [ μ t ( z + 3 ρ ) ] .

Metrics