Abstract

A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
  2. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967); M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy Review and Supplement (Harrick Scientific Corporation, New York, 1985).
  3. R. Iwamoto, K. Ohta, “Quantitative surface analysis by Fourier transform attenuated total reflection infrared spectroscopy,” Appl. Spectrosc. 38, 359–365 (1984).
  4. E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).
  5. N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).
  6. I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).
  7. P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
  8. S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).
  9. K. Newby, W. M. Reichert, J. D. Andrade, R. E. Benner, “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber,” Appl. Opt. 23, 1812–1815 (1984).
  10. A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).
  11. H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).
  12. J. F. Giuliani, H. Wohltjen, N. L. Jarvis, “Reversible optical waveguide sensor for ammonia vapors,” Opt. Lett. 8, 54–56 (1983).
  13. V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).
  14. S. J. Saggese, J. A. Harrington, G. H. Sigel, “Hollow waveguides for sensor applications,” in Chemical, Biochemical, and Environmental Fiber Sensors II, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1368, 2–14 (1991).
  15. A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).
  16. Y. Mendelson, B. Y. Lin, R. A. Peura, A. C. Clermont, “Carbon dioxide laser based multiple ATR technique for measuring glucose in aqueous solutions,” Appl. Opt. 27, 5077–5080 (1988).
  17. D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).
  18. R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).
  19. M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).
  20. J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).
  21. T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).
  22. I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).
  23. J. A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941), Sec. 9.4–9.8.
  24. S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).
  25. W. M. Elsasser, “Attenuation in a dielectric circular rod,” J. Appl. Phys. 20, 1193–1196 (1949).
  26. L. Reiffel, N. S. Kapany, “Some considerations on luminescent fiber chambers and intensifier screens,” Rev. Sci. Instrum. 31, 1136–1139 (1960).
  27. N. S. Kapany, D. F. Capellaro, “Fiber optics. Image transfer from Lambertian emitters,” J. Opt. Soc. Am. 51, 23–31 (1961).
  28. N. S. Kapany, J. J. Burke, “Fiber optics. Waveguide effects,” J. Opt. Soc. Am. 51, 1067–1078 (1961).
  29. N. S. Kapany, J. J. Burke, C. C. Shaw, “Fiber optics. Evanescent boundary wave propagation,”J. Opt. Soc. Am. 53, 929–935 (1963).
  30. R. J. Potter, “Transmission of optical fibers,” J. Opt. Soc. Am. 51, 1079–1089 (1961).
  31. R. J. Potter, “Light collecting properties of a perfect circular optical fiber,” J. Opt. Soc. Am. 53, 256–260 (1963).
  32. R. Ulrich, W. Prettl, “Planar leaky light guides and couplers,” Appl. Phys. 1, 55–68 (1973).
  33. A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12, 1015–1025 (1973).
  34. G. Muller, K. Abraham, M. Schaldach, “QuantitativeATR spectroscopy: some basic considerations,” Appl. Opt. 20, 1182–1190 (1981).
  35. D. Marcuse, “Scattering and absorption losses of multimode optical fibers and fiber lasers,” Bell Syst. Tech. J. 55, 1463–1488 (1976).
  36. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  37. V. Ruddy, “An effective attenuation coefficient for evanescent-wave spectroscopy using multimode fiber,” Fiber Int. Opt. 9, 143–151 (1990).
  38. V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
  39. B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

1994 (2)

A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

1993 (1)

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

1992 (1)

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

1991 (1)

I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).

1990 (3)

V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).

V. Ruddy, “An effective attenuation coefficient for evanescent-wave spectroscopy using multimode fiber,” Fiber Int. Opt. 9, 143–151 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).

1989 (1)

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

1988 (2)

Y. Mendelson, B. Y. Lin, R. A. Peura, A. C. Clermont, “Carbon dioxide laser based multiple ATR technique for measuring glucose in aqueous solutions,” Appl. Opt. 27, 5077–5080 (1988).

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

1987 (3)

H. Tai, H. Tanaka, T. Yoshino, “Fiber-optic evanescent-wave methane gas sensor using optical absorption for the 3.392-μm line of a He–Ne laser,” Opt. Lett. 12, 437–439 (1987).

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

1986 (1)

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

1985 (1)

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

1984 (2)

1983 (1)

1981 (1)

1976 (1)

D. Marcuse, “Scattering and absorption losses of multimode optical fibers and fiber lasers,” Bell Syst. Tech. J. 55, 1463–1488 (1976).

1973 (2)

R. Ulrich, W. Prettl, “Planar leaky light guides and couplers,” Appl. Phys. 1, 55–68 (1973).

A. Reisinger, “Characteristics of optical guided modes in lossy waveguides,” Appl. Opt. 12, 1015–1025 (1973).

1963 (2)

1961 (3)

1960 (1)

L. Reiffel, N. S. Kapany, “Some considerations on luminescent fiber chambers and intensifier screens,” Rev. Sci. Instrum. 31, 1136–1139 (1960).

1949 (1)

W. M. Elsasser, “Attenuation in a dielectric circular rod,” J. Appl. Phys. 20, 1193–1196 (1949).

Abraham, K.

Ambrose, K. R.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Andrade, J. D.

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

K. Newby, W. M. Reichert, J. D. Andrade, R. E. Benner, “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber,” Appl. Opt. 23, 1812–1815 (1984).

Benner, R. E.

Borenstein, A.

I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).

M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).

Bunimovich, D.

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

Burke, J. J.

Capellaro, D. F.

Clermont, A. C.

Compton, D. A. C.

N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).

Curbelo, R.

N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).

Dodiuk, H.

E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).

Elsasser, W. M.

W. M. Elsasser, “Attenuation in a dielectric circular rod,” J. Appl. Phys. 20, 1193–1196 (1949).

Feinstein-Jaffe, I.

I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).

Gardenhire, E. M.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Giuliani, J. F.

Greenstein, A.

Gregonis, D. E.

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

Griffin, G. D.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Gupta, B. D.

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967); M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy Review and Supplement (Harrick Scientific Corporation, New York, 1985).

Harrington, J. A.

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Hollow waveguides for sensor applications,” in Chemical, Biochemical, and Environmental Fiber Sensors II, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1368, 2–14 (1991).

Hill, S. L.

N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).

Iwamoto, R.

Jarvis, N. L.

Kapany, N. S.

Katz, M.

I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).

M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).

Katzir, A.

A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).

E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).

M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).

Kellner, R.

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

Kosower, E. M.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).

Krska, R.

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

Kychakoff, G.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).

Lin, B. Y.

Lin, N. J.

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

MacCabe, S.

V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).

MacCraith, B. D.

V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).

Marcuse, D.

D. Marcuse, “Scattering and absorption losses of multimode optical fibers and fiber lasers,” Bell Syst. Tech. J. 55, 1463–1488 (1976).

Margalit, E.

E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).

Mendelson, Y.

Messica, A.

A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).

Muller, G.

Murphy, J. A.

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).

Newby, K.

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

K. Newby, W. M. Reichert, J. D. Andrade, R. E. Benner, “Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber,” Appl. Opt. 23, 1812–1815 (1984).

Ohta, K.

Paiss, I.

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

Paul, P. H.

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).

Peura, R. A.

Potter, R. J.

Prettl, W.

R. Ulrich, W. Prettl, “Planar leaky light guides and couplers,” Appl. Phys. 1, 55–68 (1973).

Reichert, W. M.

Reiffel, L.

L. Reiffel, N. S. Kapany, “Some considerations on luminescent fiber chambers and intensifier screens,” Rev. Sci. Instrum. 31, 1136–1139 (1960).

Reisinger, A.

Riedel, W. J.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

Rosenberg, E.

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

Ruddy, V.

V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).

V. Ruddy, “An effective attenuation coefficient for evanescent-wave spectroscopy using multimode fiber,” Fiber Int. Opt. 9, 143–151 (1990).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).

Saggese, S. J.

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Hollow waveguides for sensor applications,” in Chemical, Biochemical, and Environmental Fiber Sensors II, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1368, 2–14 (1991).

Schaldach, M.

Schelkunoff, S. A.

S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).

Schiessl, U.

A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).

Schnitzer, I.

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).

Sepaniak, M. J.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Sharma, A.

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

Shaw, C. C.

Sigel, G. H.

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Hollow waveguides for sensor applications,” in Chemical, Biochemical, and Environmental Fiber Sensors II, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1368, 2–14 (1991).

Simhony, S.

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

Singh, C. D.

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941), Sec. 9.4–9.8.

Tacke, M.

A. Messica, A. Greenstein, A. Katzir, U. Schiessl, M. Tacke, “A fiber-optic evanescent-wave sensor for gas detection,” Opt. Lett. 19, 1167–1169 (1994).

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).

Taga, K.

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

Tai, H.

Tanaka, H.

Tromberg, B. J.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Ulrich, R.

R. Ulrich, W. Prettl, “Planar leaky light guides and couplers,” Appl. Phys. 1, 55–68 (1973).

Van Wagenen, R. A.

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

Vo-Dinh, T.

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Wohltjen, H.

Wright, N. A.

N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).

Yoshino, T.

Appl. Spectrosc. (2)

V. Ruddy, S. MacCabe, B. D. MacCraith, “Detection of propane by IR-ATR in a Teflon clad fluoride glass optical fiber,” Appl. Spectrosc. 44, 1461–1463 (1990).

T. Vo-Dinh, B. J. Tromberg, G. D. Griffin, K. R. Ambrose, M. J. Sepaniak, E. M. Gardenhire, “Antibody-based fiber-optics biosensor for the carcinogen benzo(a)pyrene,” Appl. Spectrosc. 41, 735–738 (1987).

Appl. Opt. (4)

Appl. Phys. (1)

R. Ulrich, W. Prettl, “Planar leaky light guides and couplers,” Appl. Phys. 1, 55–68 (1973).

Appl. Phys. Lett. (3)

P. H. Paul, G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

R. Krska, E. Rosenberg, K. Taga, R. Kellner, A. Messica, A. Katzir, “Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water,” Appl. Phys. Lett. 61, 1778–1780 (1992).

Appl. Spectrosc. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Scattering and absorption losses of multimode optical fibers and fiber lasers,” Bell Syst. Tech. J. 55, 1463–1488 (1976).

Fiber Int. Opt. (1)

V. Ruddy, “An effective attenuation coefficient for evanescent-wave spectroscopy using multimode fiber,” Fiber Int. Opt. 9, 143–151 (1990).

IEEE Trans. Electron. Devices (1)

J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, N. J. Lin, “Remote fiber-optic biosensors based on evanescent excited fluoroimmunoassay: concept and progress,” IEEE Trans. Electron. Devices 32, 1175–1179 (1985).

J. Appl. Phys. (1)

S. Simhony, I. Schnitzer, A. Katzir, E. M. Kosower, “Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers,” J. Appl. Phys. 64, 3732–3734 (1988).

J. Am. Chem. Soc. (1)

I. Feinstein-Jaffe, A. Borenstein, M. Katz, “Fiber optic attenuated reflection spectroscopy (FO-ATR) for investigation of organometallic polymeric films,” J. Am. Chem. Soc. 113, 7042–7044 (1991).

J. Appl. Phys. (2)

W. M. Elsasser, “Attenuation in a dielectric circular rod,” J. Appl. Phys. 20, 1193–1196 (1949).

V. Ruddy, B. D. MacCraith, J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).

J. Mol. Struct. (1)

D. Bunimovich, R. Kellner, R. Krska, A. Messica, I. Paiss, U. Schiessl, M. Tacke, K. Taga, A. Katzir, “A system for monitoring and control of processes based on IR fibers and tunable diode lasers,” J. Mol. Struct. 292, 125–132 (1993).

J. Opt. Soc. Am. (5)

Mater. Sci. Eng. (1)

I. Schnitzer, A. Katzir, U. Schiessl, W. J. Riedel, M. Tacke, “Evanescent field IR spectroscopy using optical fibers and tunable diode lasers,” Mater. Sci. Eng. B5, 333–337 (1989).

Opt. Eng. (1)

B. D. Gupta, C. D. Singh, A. Sharma, “Fiber-optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Opt. Eng. 33, 1864–1868 (1994).

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

L. Reiffel, N. S. Kapany, “Some considerations on luminescent fiber chambers and intensifier screens,” Rev. Sci. Instrum. 31, 1136–1139 (1960).

Other (9)

M. Katz, A. Borenstein, I. Schnitzer, A. Katzir, “Attenuated total reflection spectroscopy with chalcogenide fiber,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 236–246 (1991).

J. A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941), Sec. 9.4–9.8.

S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Hollow waveguides for sensor applications,” in Chemical, Biochemical, and Environmental Fiber Sensors II, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1368, 2–14 (1991).

A. Messica, A. Katzir, U. Schiessl, M. Tacke, “Liquid and gas fiber-optic evanescent-wave spectroscopy by tunable lasers,” in Infrared Fiber-Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 192–200 (1991).

E. Margalit, H. Dodiuk, E. M. Kosower, A. Katzir, “Infrared fiber evanescent wave spectroscopy for in-situ monitoring of chemical processes,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1048, 145–152 (1989).

N. A. Wright, R. Curbelo, D. A. C. Compton, S. L. Hill, “The use of mid-infrared optical fibers for analytical applications,” in Infrared Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng., 1048, 153–161 (1989).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967); M. Mirabella, N. J. Harrick, Internal Reflection Spectroscopy Review and Supplement (Harrick Scientific Corporation, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of ray propagation: (a) Propagation plane defined by γ, the skewness angle, and, θ, the axial angle; (b) top view of the propagation plane; (c) multiple Fresnel reflections at the fiber end faces.

Fig. 2
Fig. 2

Tilted fiber and centered-spot launching conditions: θ s , angle between the optical axis and the fiber axis; θ′, angle of incidence.

Fig. 3
Fig. 3

Evanescent-wave absorbance versus fiber length for three different experimental apparatuses. A, laser FEWS of a tilted fiber and centered-spot coupling; B, FTIR FEWS of a nontilted fiber and a centered spot; C, laser FEWS for a nontilted fiber and an off-centered spot.

Fig. 4
Fig. 4

Evanescent-wave absorbance versus coupling angle for a laser FEWS sensor with centered-spot coupling.

Fig. 5
Fig. 5

Evanescent-wave absorbance versus coupling lens F≤ for a FTIR FEWS apparatus with centered-spot coupling.

Fig. 6
Fig. 6

Evanescent-wave absorbance versus fiber radius for three different FEWS apparatuses: A, laser FEWS of a tilted fiber and centered-spot coupling; B, FTIR FEWS of a nontilted fiber and a centered spot; C, laser FEWS for a nontilted fiber and an off-centered spot.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

P ( L , a ) = T ( r , γ, θ, φ ) * I ( r , γ, θ, φ ) d S d Ω ,
sin θ cos γ [ 1 ( n cl 2 / n co 2 ) ] 1 / 2 .
sin θ M = n air / n co .
0 θ θ c 0 γ 90 ° , θ c θ θ M γ m γ 90 ° ,
t 2 = 1 2 ( t p 2 + t s 2 ) ,
t p 2 = 4 n co cos θ × b ( n co cos θ + b ) 2 , t s 2 = 4 n co n air cos θ × b ( n air 2 cos θ + n co b ) 2 , b ( n air 2 n co 2 sin 2 θ ) 1 / 2 .
N = L tan θ 2 a cos γ .
L i = 2 a cos γ sin θ .
L p = N × L i = L cos θ .
r ATR 2 = 1 2 ( r s 2 + r p 2 ) .
r s 2 = 1 4 n co n cl 2 cos ψ ( κ cl n cl κ co n co ) ( n co 2 n cl 2 ) ( n co 2 sin 2 ψ n cl 2 ) 1 / 2 , r p 2 = 1 4 n co 2 n cl 2 cos ψ ( κ cl n cl κ co n co ) × ( 2 n co 2 sin 2 ψ n cl 2 ) ( n co 2 n cl 2 ) ( n co 2 sin 2 ψ n cl 2 ) 1 / 2 × ( n co 2 sin 2 ψ n cl 2 cos 2 ψ ) ,
M ( θ , γ ) = 1 [ r 4 × ( r ATR 2 ) N exp ( α co L p ) ] 2 .
r s 2 = [ n co sin ψ ( n air 2 n co 2 cos 2 ψ ) 1 / 2 n co sin ψ + ( n air 2 n co 2 cos 2 ψ ) 1 / 2 ] 2 , r p 2 = [ n air 2 sin ψ n co ( n air 2 n co 2 cos 2 ψ ) 1 / 2 n air 2 sin ψ + n co ( n air 2 n co 2 cos 2 ψ ) 1 / 2 ] 2 .
I ( θ ) d θ = 0 2 π I 0 r ( θ , ϕ ) d r d ϕ ,
r ( θ , ϕ ) = r cos ϕ ± [ F ( θ ) r 2 sin 2 ϕ ] 1 / 2 ,
F ( θ ) f 2 sin 2 ( θ θ s ) cos 2 θ .
I ( θ ) = I ( θ ) n co 2 cos θ b .
T ( r , γ , θ , φ ) = t 4 ( r ATR 2 ) N exp ( α co L p ) M ( γ , θ ) .
( R ATR ) N ( 1 K θ ) N exp ( K L θ 2 2 a ) ,
I ( θ ) C ( θ θ s ) ,
T ( L , a ) ( θ θ s ) exp ( K L θ 2 a ) .
T ( L , a , θ s ) δ 2 exp [ K L ( θ s + δ ) 2 a ] .
T ( L , a , θ T ) 0 θ T * θ * exp ( K L θ 2 a ) ,
A ln [ T ( L , a , θ s , κ cl ) T ( L , a , θ s , κ cl = 0 ) ] .
r s = n 1 sin θ i n 2 sin θ t n 1 sin θ i + n 2 sin θ t , r p = n 2 sin θ i n 1 sin θ t n 2 sin θ i + n 1 sin θ t ,
cos θ t = i [ sin 2 θ i ( n 2 / n 1 ) 2 ] 1 / 2 ( n 2 / n 1 ) .
r s = n 1 cos θ 1 i ( n 1 2 sin 2 θ i n 2 2 ) 1 / 2 n 1 cos θ 1 + i ( n 1 2 sin 2 θ i n 2 2 ) 1 / 2 , r p = n 2 2 cos θ i i ( n 1 2 sin 2 θ i n 2 2 ) 1 / 2 n 2 2 cos θ i + i ( n 1 2 sin 2 θ i n 2 2 ) 1 / 2 .
| r s | 2 = | ( n 1 i κ 1 ) cos θ i i [ ( n 1 i κ 1 ) 2 sin 2 θ i ( n 2 i κ 2 ) 2 ] 1 / 2 ( n 1 i κ 1 ) cos θ i + i [ ( n 1 i κ 1 ) 2 sin 2 θ i ( n 2 i κ 2 ) 2 ] 1 / 2 | 2 , | r p | 2 = | ( n 2 i κ 2 ) 2 cos θ i i ( n 1 i κ 1 ) [ ( n 1 i κ 1 ) 2 sin 2 θ i ( n 2 i κ 2 ) 2 ] 1 / 2 ( n 2 i κ 2 ) 2 cos θ i + i ( n 1 i κ 1 ) [ ( n 1 i κ 1 ) 2 sin 2 θ i ( n 2 i κ 2 ) 2 ] 1 / 2 | 2 .
κ i n i for i = 1 , 2 , | n 2 κ 2 n 1 κ 1 sin 2 θ | | n 1 2 sin 2 θ n 2 2 | 1
( a + i b ) 1 / 2 = x + i y ,
x = [ | a ± ( a 2 + b 2 ) 1 / 2 2 | ] 1 / 2 , y = [ | a ± ( a 2 + b 2 ) 1 / 2 2 | ] 1 / 2 .
[ 1 + ( b a ) 2 ] 1 / 2 1 + b 2 2 a 2 ,
x a = ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 , y b 2 a = n 2 κ 2 n 1 κ 1 sin 2 θ ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 ;
| r s | 2 = | ( n 1 i κ 1 ) cos θ + i ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 n 2 κ 2 n 1 κ 1 sin 2 θ ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 ( n 1 i κ 1 ) cos θ i ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 + n 2 κ 2 n 1 κ 1 sin 2 θ ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 | 2 .
| r s | 2 = ( n 1 2 n 2 2 ) 2 cos θ n 1 n 2 κ 2 n 2 2 κ 1 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 ( n 1 2 n 2 2 ) + 2 cos θ n 1 n 2 κ 2 n 2 2 κ 1 ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 .
| r s | 2 = 1 4 n 1 n 2 2 ( κ 2 n 2 κ 1 n 1 ) cos θ ( n 1 2 n 2 2 ) ( n 1 2 sin 2 θ n 2 2 ) 1 / 2 .
0 arcsin ( B / a ) 4 a cos γdγ a sin γ [ A 2 B 2 ( A 2 B 2 ) a 2 sin 2 γ ] 1 / 2 × r d r ( r 2 a 2 sin 2 γ ) 1 / 2 .
π 2 < ϕ 3 π 2 : r f cos θ s tan θ tan θ s ( R L 2 + r 2 2 R L r cos ϕ ) 1 / 2 f cos θ s , π 2 < ϕ π 2 : r f cos θ s tan θ tan θ s > r sin ϕ f cos θ s r sin ϕ f cos θ s < tan θ tan θ s ( R L 2 + r 2 2 R L r cos ϕ ) 1 / 2 f cos θ s .
sin γ min = r 0 sin φ r s r 0 cos φ , sin γ max = r 0 sin φ + r s r 0 cos φ .
R ˜ min = { r 0 cos φ [ r s 2 ( r 0 sin φ a sin γ ) 2 ] 1 / 2 } 2 + a 2 sin 2 γ, R ˜ max = { r 0 cos φ + [ r s 2 ( r 0 sin φ a sin γ ) 2 ] 1 / 2 } 2 + a 2 sin 2 γ .
d S = a cos γdγ R ˜ d R ˜ ( R ˜ 2 a 2 sin 2 γ ) 1 / 2 .
r 2 = r 0 2 + R ˜ 2 2 r 0 R ˜ cos ( φ ϕ ) ,

Metrics