Abstract

By using an optical heterodyne technique, we have demonstrated the detection of ballistic photons traveling through a suspension. We measured the propagation time of light in a sample with a variable optical delay line in the reference arm of an interferometer, using a superluminescent diode as a light source. The resolution and accuracy in propagation time measurement were 400 and 3 fs, respectively. The minimum detectable rotation angle of 1/10,000 deg was achieved with an integration time of 5 s. This system can measure the refractive index and optical rotatory power of the suspension in a solvent without disturbing heavy scattering from particles in the suspension, because ballistic photons are detected.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–324 (1990).
  2. I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).
  4. E. J. Gilham, R. J. King, “New design of spectropolarimeter,” J. Sci. Instrum. 38, 21–25 (1961).
  5. R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
  6. M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
  7. M. J. Goetz, M. D. Fox, R. B. Northrop, “Microdegree polarimetry using a diode laser for glucose detection,” in Proceedings of the Annual Northeast Bioengineering Conference (Institute of Electrical and Electronics Engineers, New York, 1992), Vol. 18, pp. 97–98.

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

1990 (2)

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).

K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–324 (1990).

1988 (1)

I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).

1961 (1)

E. J. Gilham, R. J. King, “New design of spectropolarimeter,” J. Sci. Instrum. 38, 21–25 (1961).

Alfano, R. R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Collins, R. W.

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Fox, M. D.

M. J. Goetz, M. D. Fox, R. B. Northrop, “Microdegree polarimetry using a diode laser for glucose detection,” in Proceedings of the Annual Northeast Bioengineering Conference (Institute of Electrical and Electronics Engineers, New York, 1992), Vol. 18, pp. 97–98.

Freund, I.

I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Gilham, E. J.

E. J. Gilham, R. J. King, “New design of spectropolarimeter,” J. Sci. Instrum. 38, 21–25 (1961).

Goetz, M. J.

M. J. Goetz, M. D. Fox, R. B. Northrop, “Microdegree polarimetry using a diode laser for glucose detection,” in Proceedings of the Annual Northeast Bioengineering Conference (Institute of Electrical and Electronics Engineers, New York, 1992), Vol. 18, pp. 97–98.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

Kaveh, M.

I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).

King, R. J.

E. J. Gilham, R. J. King, “New design of spectropolarimeter,” J. Sci. Instrum. 38, 21–25 (1961).

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Northrop, R. B.

M. J. Goetz, M. D. Fox, R. B. Northrop, “Microdegree polarimetry using a diode laser for glucose detection,” in Proceedings of the Annual Northeast Bioengineering Conference (Institute of Electrical and Electronics Engineers, New York, 1992), Vol. 18, pp. 97–98.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Rosenbluh, M.

I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Toida, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

Yoo, K. M.

Appl. Phys. B (1)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).

J. Sci. Instrum. (1)

E. J. Gilham, R. J. King, “New design of spectropolarimeter,” J. Sci. Instrum. 38, 21–25 (1961).

Opt. Lett. (1)

Phys. Rev. Lett. (1)

I. Freund, M. Kaveh, M. Rosenbluh, “Dynamic multiple scattering: ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60, 1130–1133 (1988).

Rev. Sci. Instrum. (1)

R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1180 (1991).

Other (1)

M. J. Goetz, M. D. Fox, R. B. Northrop, “Microdegree polarimetry using a diode laser for glucose detection,” in Proceedings of the Annual Northeast Bioengineering Conference (Institute of Electrical and Electronics Engineers, New York, 1992), Vol. 18, pp. 97–98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the polarimeter: PID, proportional/integral/derivative action; L.P., linear polarizer; PZT, piezoactuator of Pb(Zn, Ti)O3.

Fig. 2
Fig. 2

Observation of I disc time by using glucose aqueous solutions with a 1-cm path length. Densities are 0, 50, 100, 200, 400, 800 mg/100 cm3. A density of 50 mg/100 cm3 with a 1-cm optical path length corresponds to a delay time of 3 fs.

Fig. 3
Fig. 3

Observed I disc pol as a function of θ.

Fig. 4
Fig. 4

Observed optical rotatory power of a glucose aqueous solution with a 1-cm path length. The rms noise level is 1/10,000 deg with an integration time of 5 s.

Fig. 5
Fig. 5

Observed optical rotatory power of a glucose aqueous solution with scatterers; the optical path length is 1 cm. The scatterer is polystyrene Latex whose diameter is 3.0 μm, and its number density is 8.3 × 108/cm3. The rms noise level is 1/200 deg with an integration time of 5 s.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E S ( t ) = E S 0 ( t ) exp ( i ω S t + i ϕ S ) [ 0 1 ] ,
E R pol ( t ) = E R 0 ( t ) exp ( i ω R t + i ϕ R ) [ 1 0 ] ,
E R time ( t ) = E R 0 ( t ) exp ( i ω R t + i ϕ R ) [ 0 1 ] ,
E S 0 ( t ) = E R 0 ( t ) = 0 ,
G ( τ ) E S 0 2 = E S 0 ( t + τ ) E S 0 ( t ) ,
G ( τ ) E R 0 2 = E R 0 ( t + τ ) E R 0 ( t ) ,
G ( τ ) E R 0 E S 0 = E R 0 ( t + τ ) E S 0 ( t ) ,
G ( τ ) = exp [ ( τ τ c ) 2 ] ,
E out ( t ) = 0 d t R ( t ) E S ( t t ) ,
R ( t ) = R 0 ( t ) [ cos { θ ( t ) } sin { θ ( t ) } sin { θ ( t ) } cos { θ ( t ) } ] ,
R ( t ) R 0 ( t ) [ 1 θ ( t ) θ ( t ) 1 ] .
I det pol ( t ) | E R pol ( t τ d ) + E out ( t ) | 2 | E R pol ( t τ d ) | 2 + | E out ( t ) | 2 + ( E R 0 E S 0 exp [ i ω R ( t τ d ) i ϕ R ] × 0 d t R 0 ( t ) θ ( t ) G ( t τ d ) × exp [ i ω S ( t t ) + i ϕ S ] + C . C . ) ,
I B ( t ) = E R 0 E S 0 exp [ i ( t ω B + ω R τ d + ϕ S ϕ R ) ] × 0 d t R 0 ( t ) θ ( t ) G ( t τ d ) × exp [ i ω S t ] + C . C .
I disc pol = | I B | = 2 | E R 0 E S 0 0 d t R 0 ( t ) θ ( t ) × G ( t τ d ) exp ( i ω S t ) | .
R 0 ( τ ) = δ ( τ τ 0 ) ,
I disc pol = | θ | 2 E R 0 E S 0 G ( τ 0 τ d ) ,
θ = θ ( τ 0 ) .
I disc time = 2 E R 0 E S 0 G ( τ 0 τ d ) .

Metrics