Abstract

A laser scanning differential interference contrast microscope using a differential detection method is proposed. This microscope permits observers to control the differential image contrast with a simple operation. Utilizing this function, the observers are capable of obtaining the optimized differential image whose contrast is most favorable for observation. A simple theoretical analysis and experimental considerations are described.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).
  2. C. J. Cogswell, C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992).
  3. J. M. Eastman, J. M. Zavislan, “A new optical surface microprofiling instrument,” in Precision Surface Metrology, J. C. Wyant, ed., Proc. SPIE429, 56–64 (1983).
  4. T. C. Bristow, A. Bouzid, J. Bietry, “Surface measurements and applications for manufactured parts using noncontact profilometer,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 217–222 (1988).
  5. M. J. Fairlie, J. G. Akkerman, R. S. Timsit, “Surface roughness evaluation by image analysis in Nomarski DIC microscopy,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 105–113 (1987).
  6. G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements,” in High Resolution Soft X-Ray Optics, E. Spiller, ed., Proc. SPIE316, 43–53 (1981).
  7. G. Makosch, B. Drollinger, “Surface profile measurement with a scanning differential ac interferometer,” Appl. Opt. 23, 4544–4553 (1984).

1992 (1)

C. J. Cogswell, C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992).

1984 (1)

1979 (1)

D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).

Akkerman, J. G.

M. J. Fairlie, J. G. Akkerman, R. S. Timsit, “Surface roughness evaluation by image analysis in Nomarski DIC microscopy,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 105–113 (1987).

Bietry, J.

T. C. Bristow, A. Bouzid, J. Bietry, “Surface measurements and applications for manufactured parts using noncontact profilometer,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 217–222 (1988).

Bouzid, A.

T. C. Bristow, A. Bouzid, J. Bietry, “Surface measurements and applications for manufactured parts using noncontact profilometer,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 217–222 (1988).

Bristow, T. C.

T. C. Bristow, A. Bouzid, J. Bietry, “Surface measurements and applications for manufactured parts using noncontact profilometer,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 217–222 (1988).

Cogswell, C. J.

C. J. Cogswell, C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992).

Drollinger, B.

Eastman, J. M.

J. M. Eastman, J. M. Zavislan, “A new optical surface microprofiling instrument,” in Precision Surface Metrology, J. C. Wyant, ed., Proc. SPIE429, 56–64 (1983).

Fairlie, M. J.

M. J. Fairlie, J. G. Akkerman, R. S. Timsit, “Surface roughness evaluation by image analysis in Nomarski DIC microscopy,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 105–113 (1987).

Gordon, R. L.

D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).

Hartman, J. S.

D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).

Lessor, D. L.

D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).

Makosch, G.

G. Makosch, B. Drollinger, “Surface profile measurement with a scanning differential ac interferometer,” Appl. Opt. 23, 4544–4553 (1984).

G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements,” in High Resolution Soft X-Ray Optics, E. Spiller, ed., Proc. SPIE316, 43–53 (1981).

Sheppard, C. J. R.

C. J. Cogswell, C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992).

Solf, B.

G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements,” in High Resolution Soft X-Ray Optics, E. Spiller, ed., Proc. SPIE316, 43–53 (1981).

Timsit, R. S.

M. J. Fairlie, J. G. Akkerman, R. S. Timsit, “Surface roughness evaluation by image analysis in Nomarski DIC microscopy,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 105–113 (1987).

Zavislan, J. M.

J. M. Eastman, J. M. Zavislan, “A new optical surface microprofiling instrument,” in Precision Surface Metrology, J. C. Wyant, ed., Proc. SPIE429, 56–64 (1983).

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

D. L. Lessor, J. S. Hartman, R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory,” J. Opt. Soc. Am. 69, 357–366 (1979).

J. Microsc. (1)

C. J. Cogswell, C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992).

Other (4)

J. M. Eastman, J. M. Zavislan, “A new optical surface microprofiling instrument,” in Precision Surface Metrology, J. C. Wyant, ed., Proc. SPIE429, 56–64 (1983).

T. C. Bristow, A. Bouzid, J. Bietry, “Surface measurements and applications for manufactured parts using noncontact profilometer,” in Optical Testing and Metrology II, C. Grover, ed., Proc. SPIE954, 217–222 (1988).

M. J. Fairlie, J. G. Akkerman, R. S. Timsit, “Surface roughness evaluation by image analysis in Nomarski DIC microscopy,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 105–113 (1987).

G. Makosch, B. Solf, “Surface profiling by electro-optical phase measurements,” in High Resolution Soft X-Ray Optics, E. Spiller, ed., Proc. SPIE316, 43–53 (1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the D-DIC microscope. PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Step structure of the object with (a) a single boundary and (b) two boundaries.

Fig. 3
Fig. 3

Images of part of a CCD pattern obtained by a D-DIC microscope with (a) a signal of detector1 and (b) a differential signal of detector1 and detector2. The angle of the half-wave plate is φ = π/8.

Fig. 4
Fig. 4

D-DIC images of the chromium pattern on a SiO2 glass substrate with dust particles. The differential contrast at the edge of the chromium pattern is (a) maximum and (b) minimum.

Fig. 5
Fig. 5

Images of part of the CCD pattern obtained by (a) the dark-field observation of a conventional DIC microscope and (b) the absolute value calculation of differential signal S(x) from Fig. 3(b).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

p ( ξ , x ) = o ( s ) u ( s x ) exp ( i k ξ s ) d s ,
p A ( ξ , x ) = o ( s ) u ( s x δ ) exp ( i k ξ s ) d s ,
p B ( ξ , x ) = o ( s ) u ( s x + δ ) exp ( i k ξ s ) d s .
I 1 ( ξ , x ) = | cos 2 φ P A ( ξ , x ) + exp ( i θ ) sin 2 φ P B ( ξ , x ) | 2 ,
I 2 ( ξ , x ) = | sin 2 φ P A ( ξ , x ) + exp ( i θ ) cos 2 φ P B ( ξ , x ) | 2 ,
S ( x ) = N A N A I 1 ( ξ , x ) d ξ N A N A I 2 ( ξ , x ) d ξ ,
o ( s ) = { a s < 0 b exp ( i ψ ) s > 0 ,
S ( 0 ) = 2 C [ cos 4 φ ( a 2 b 2 ) sin 4 φ 2 a b cos ( θ + ψ ) ] ,
C = 0 N A [ u ( s ) cos ( k ξ s ) d s δ δ u ( t ) cos ( k ξ t ) d t ] d ξ .
φ = 1 4 [ tan 1 ( 2 a b sin ψ a 2 b 2 ) + m π ] ,
φ = 1 4 [ tan 1 ( a 2 b 2 2 a b sin ψ ) + n π ] ,
| S ( 0 ) | maximum = 4 C | sin ψ | .
I ( 0 ) maximum = 2 D ( 1 cos ψ ) ,
D = 0 N A [ δ δ u ( s ) cos ( k ξ s ) d s ] 2 d ξ .

Metrics