Abstract

We describe a type of multilayer dielectric coating designed to enhance the intensity of evanescent waves. The coating consists of a stack of alternating high- and low-index quarter-wave layers followed by a final low-index layer whose thickness is chosen to optimize the evanescent-wave intensity. Indirect measurements of the film properties are in good agreement with theory.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).
  2. D. B. Ostrowsky, R. Reinisch, eds., Guided-Wave Nonlinear Optics (Kluwer Academic, Dordrecht, 1992).
  3. S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).
  4. H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).
  5. T. Esslinger, M. Weidemüller, A. Hemmerich, T. W. Hänsch, “Surface-plasmon mirror for atoms,” Opt. Lett. 18, 450–452 (1993).
  6. F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
  7. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
  8. W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).
  9. G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.
  10. Z. Knittl, Optics of Thin Films, (Wiley, London, 1976).
  11. J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 46, 127–137 (1977).
  12. C. Mitsas, D. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678–1683 (1995).

1995 (1)

1994 (3)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).

1993 (1)

1992 (2)

F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).

H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).

1986 (1)

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

1977 (1)

J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 46, 127–137 (1977).

Adams, C. S.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).

Aspect, A.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Bretenaker, F.

F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).

Cohen-Tannoudji, C.

H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).

Czapla, A.

J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 46, 127–137 (1977).

Dalibard, J.

H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).

Dutriaux, L.

F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).

Esslinger, T.

Hänsch, T. W.

Hemmerich, A.

Kaiser, R.

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Katzir, A.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

Knittl, Z.

Z. Knittl, Optics of Thin Films, (Wiley, London, 1976).

Kosower, E. M.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

Labeyrie, G.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Landragin, A.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Le Floch, A.

F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).

Leipold, D.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

Lévy, Y.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

Mitsas, C.

Mlynek, J.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

Seifert, W.

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

Siapkas, D.

Sigel, M.

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).

Simhony, S.

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

Szczyrbowski, J.

J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 46, 127–137 (1977).

Vansteenkiste, N.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Von Zanthier, J.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Wallis, H.

H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).

Weidemüller, M.

Westbrook, C.

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Wallis, J. Dalibard, C. Cohen-Tannoudji, “Trapping atoms in a gravitational cavity,” Appl. Phys. B 54, 407–419 (1992).

Appl. Phys. Lett. (1)

S. Simhony, E. M. Kosower, A. Katzir, “Novel attenuated total internal reflectance spectroscopic cell using infrared fibers for aqueous solutions,” Appl. Phys. Lett. 49, 253–254 (1986).

Opt. Commun. (2)

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).

W. Seifert, R. Kaiser, A. Aspect, J. Mlynek, “Reflection of atoms from a dielectric wave guide,” Opt. Commun. 111, 566–576 (1994).

Opt. Lett. (1)

Phys. Rep. (1)

C. S. Adams, M. Sigel, J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994).

Phys. Rev. Lett. (1)

F. Bretenaker, A. Le Floch, L. Dutriaux, “Direct measurement of the optical Goos–Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).

Thin Solid Films (1)

J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 46, 127–137 (1977).

Other (3)

D. B. Ostrowsky, R. Reinisch, eds., Guided-Wave Nonlinear Optics (Kluwer Academic, Dordrecht, 1992).

G. Labeyrie, A. Landragin, J. Von Zanthier, R. Kaiser, N. Vansteenkiste, C. Westbrook, A. Aspect, “Detailed study of a high finesse planar waveguide for evanescent wave atomic mirrors,” submitted to J. Eur. Opt. Soc.

Z. Knittl, Optics of Thin Films, (Wiley, London, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dielectric structure for enhancement of evanescent-wave intensities. The layers labeled H indicate the high-index (n = 2.3) TiO2 layers, and the layers labeled L indicate the low-index (n = 1.454) SiO2 layers. The laser light is incident on the film structure from the substrate at an angle θ s . An evanescent wave is produced from TIR at the vacuum interface; the structure is designed to maximize the intensity of the evanescent wave.

Fig. 2
Fig. 2

Schematic of the apparatus used for measuring ellipticity and attenuation of a light wave by the film structure.

Fig. 3
Fig. 3

Polarization measurements made as a function of the incident angle on linearly polarized light reflected from the dielectric structure: (a) ellipsometry measurements; (b) phase difference between TE and TM light shift deduced from (a) by removing the effects of the coupling prism.

Fig. 4
Fig. 4

Square of the electric field as a function of position inside the film at resonance.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( E x B z ) = ( t E i i β t E i ) = ( a i b i c d ) { E i [ 1 + exp ( i μ ) ] E i Y s [ 1 exp ( i μ ) ] } ,
( a ib i c d ) = ( cos ϕ i Y L 1 sin ϕ iY L sin ϕ cos ϕ ) × [ 0 i ( Y L ) M / Y H M + 1 i Y H M + 1 / ( Y L ) M 0 ] .
t = 2 Y s Y s ( d + β b ) + i ( β a c ) .
T T 0 = Y H 2 M + 2 ( n S 2 1 ) Y L 2 M Y S 2 ( n L 2 1 ) ,
d μ d n a = T n a 2 Y s β
T T 0 = Y H 2 M + 2 ( n S 2 1 ) Y L 2 M Y S 2 ( n H 2 1 ) .

Metrics