Abstract

The universal bio-optical algorithm of the Coastal Zone Color Scanner (CZCS) for case I waters implicitly contains an average covariance of the absorption by phytoplankton and colored dissolved organic matter (CDOM) and detritus. We made that covariance explicit by combining the CZCS algorithm with an expression for reflectance. The spectral variation of absorption by CDOM plus detritus for case I waters may be estimated by the expression a gd (λ) = 2a ph(443) *chl{exp[−0.013(λ − 443)]}.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
    [CrossRef] [PubMed]
  2. S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
    [CrossRef]
  3. W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
    [CrossRef]
  4. W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
    [CrossRef]
  5. R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
    [CrossRef]
  6. J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, (Cambridge U. Press, Cambridge, 1983), p. 401.
  7. T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
    [CrossRef]
  8. A. Morel, J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989).
    [CrossRef]
  9. R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geodes. Geophys. Int. Monogr. 10, 11–30 (1961).
  10. S. Sathyendranath, T. Platt, “The light field in the ocean: its modification and exploitation by the pelagic biota,” in P. J. Herring, A. K. Campbell, M. Withfield, L. Maddock, eds., Light and Life in the Sea (Cambridge U. Press, Cambridge, 1990), pp. 3–18.
  11. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
  12. T. L. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  13. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  14. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  15. J. S. Cleveland, M. J. Perry, “A model for partitioning particulate absorption into phytoplanktonic and detrital components,” Deep-Sea Res. 41, 197–221 (1994).
    [CrossRef]
  16. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333–13344 (1995).
    [CrossRef]
  17. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  18. K. Kalle, “The problem of Gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).
  19. K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
    [CrossRef]
  20. J. E. Tyler, R. C. Smith, Measurements of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).
  21. O. V. Kopelevich, V. I. Burenkov, “Relation between the spectral values of the light absorption coefficients of sea water, phytoplankton pigments, and the yellow substance,” Oceanology 17, 278–282 (1977).
  22. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  23. N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1652–1659 (1992).
    [CrossRef]
  24. K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
    [CrossRef]
  25. A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
    [CrossRef]
  26. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]

1995

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333–13344 (1995).
[CrossRef]

1994

J. S. Cleveland, M. J. Perry, “A model for partitioning particulate absorption into phytoplanktonic and detrital components,” Deep-Sea Res. 41, 197–221 (1994).
[CrossRef]

1992

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1652–1659 (1992).
[CrossRef]

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

1991

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

1989

W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
[CrossRef]

A. Morel, J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

1988

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

1983

1982

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

1981

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

1977

O. V. Kopelevich, V. I. Burenkov, “Relation between the spectral values of the light absorption coefficients of sea water, phytoplankton pigments, and the yellow substance,” Oceanology 17, 278–282 (1977).

1966

K. Kalle, “The problem of Gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

1961

A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
[CrossRef]

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geodes. Geophys. Int. Monogr. 10, 11–30 (1961).

Abbott, M. R.

W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
[CrossRef]

Austin, R. W.

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Balch, W. M.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
[CrossRef]

Berthon, J. F.

A. Morel, J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Broenkow, W. W.

Brown, J.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Burenkov, V. I.

O. V. Kopelevich, V. I. Burenkov, “Relation between the spectral values of the light absorption coefficients of sea water, phytoplankton pigments, and the yellow substance,” Oceanology 17, 278–282 (1977).

Carder, K. L.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Caverhill, C. M.

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Cleveland, J. S.

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333–13344 (1995).
[CrossRef]

J. S. Cleveland, M. J. Perry, “A model for partitioning particulate absorption into phytoplanktonic and detrital components,” Deep-Sea Res. 41, 197–221 (1994).
[CrossRef]

Eppley, R. W.

W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
[CrossRef]

Esaias, W.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

Evans, R.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Feldman, G.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

Harrison, W. G.

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Harvey, G. R.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Hoepffner, N.

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1652–1659 (1992).
[CrossRef]

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Horne, E. P. W.

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Ivanoff, A.

A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
[CrossRef]

Jerlov, N. G.

A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
[CrossRef]

Kalle, K.

K. Kalle, “The problem of Gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

Kirk, J. T. O.

J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, (Cambridge U. Press, Cambridge, 1983), p. 401.

Kopelevich, O. V.

O. V. Kopelevich, V. I. Burenkov, “Relation between the spectral values of the light absorption coefficients of sea water, phytoplankton pigments, and the yellow substance,” Oceanology 17, 278–282 (1977).

Lewis, M. R.

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

McClain, C.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

Morel, A.

A. Morel, J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

Ortner, P. B.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Outerbridge, R.

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Perry, M. J.

J. S. Cleveland, M. J. Perry, “A model for partitioning particulate absorption into phytoplanktonic and detrital components,” Deep-Sea Res. 41, 197–221 (1994).
[CrossRef]

Petzold, T. J.

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Petzold, T. L.

T. L. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).

Platt, T.

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

S. Sathyendranath, T. Platt, “The light field in the ocean: its modification and exploitation by the pelagic biota,” in P. J. Herring, A. K. Campbell, M. Withfield, L. Maddock, eds., Light and Life in the Sea (Cambridge U. Press, Cambridge, 1990), pp. 3–18.

Preisendorfer, R. W.

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geodes. Geophys. Int. Monogr. 10, 11–30 (1961).

Prieur, L.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Sathyendranath, S.

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1652–1659 (1992).
[CrossRef]

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

S. Sathyendranath, T. Platt, “The light field in the ocean: its modification and exploitation by the pelagic biota,” in P. J. Herring, A. K. Campbell, M. Withfield, L. Maddock, eds., Light and Life in the Sea (Cambridge U. Press, Cambridge, 1990), pp. 3–18.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

J. E. Tyler, R. C. Smith, Measurements of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

Steward, R. G.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Tyler, J. E.

J. E. Tyler, R. C. Smith, Measurements of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

Ulloa, O.

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Waterman, T. H.

A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
[CrossRef]

Appl. Opt.

Deep-Sea Res.

J. S. Cleveland, M. J. Perry, “A model for partitioning particulate absorption into phytoplanktonic and detrital components,” Deep-Sea Res. 41, 197–221 (1994).
[CrossRef]

W. M. Balch, M. R. Abbott, R. W. Eppley, “Remote sensing of primary production, I. A comparison of empirical and semianalytical algorithms,” Deep-Sea Res. 36, 281–295 (1989).
[CrossRef]

T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988).
[CrossRef]

J. Geophys. Res.

W. M. Balch, R. Evans, J. Brown, G. Feldman, C. McClain, W. Esaias, “The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms,” J. Geophys. Res. 97, 2279–2293 (1992).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333–13344 (1995).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Limnol. Oceanogr.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Morel, J. F. Berthon, “Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications,” Limnol. Oceanogr. 34, 1545–1562 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine fulvic and humic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1652–1659 (1992).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

A. Ivanoff, N. G. Jerlov, T. H. Waterman, “A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda,” Limnol. Oceanogr. 6, 129–148 (1961).
[CrossRef]

Nature

S. Sathyendranath, T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, N. Hoepffner, “Estimation of new production in the ocean by compound remote sensing,” Nature 353, 129–133 (1991).
[CrossRef]

Oceanogr. Mar. Biol. Ann. Rev.

K. Kalle, “The problem of Gelbstoff in the sea,” Oceanogr. Mar. Biol. Ann. Rev. 4, 91–104 (1966).

Oceanology

O. V. Kopelevich, V. I. Burenkov, “Relation between the spectral values of the light absorption coefficients of sea water, phytoplankton pigments, and the yellow substance,” Oceanology 17, 278–282 (1977).

Science

T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef] [PubMed]

Union Geodes. Geophys. Int. Monogr.

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geodes. Geophys. Int. Monogr. 10, 11–30 (1961).

Other

S. Sathyendranath, T. Platt, “The light field in the ocean: its modification and exploitation by the pelagic biota,” in P. J. Herring, A. K. Campbell, M. Withfield, L. Maddock, eds., Light and Life in the Sea (Cambridge U. Press, Cambridge, 1990), pp. 3–18.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review, Vol. 4 of Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

T. L. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, La Jolla, Calif., 1972).

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems, (Cambridge U. Press, Cambridge, 1983), p. 401.

J. E. Tyler, R. C. Smith, Measurements of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

GD versus chl for the range 0.08 < chl < 1.5 mg m−3. The open circles with dots represent calculated values, and the solid curve represents the equation GD = 2{1 − exp[−9(chl − 0.08)]}.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

K d ( z , λ ) = a ( z , λ ) μ ¯ d ( z ) + b b ( z , λ ) μ ¯ d ( z ) ,
a g ( λ ) = a g ( λ 0 ) exp [ - 0.013 ( λ - λ 0 ) ] .
a T ( λ ) = a w ( λ ) + a ph ( λ ) + a g d ( λ ) ,
a g d ( λ ) = a g d ( 443 ) exp [ - 0.013 ( λ - 443 ) ] , a g d ( λ ) = G D [ a ph ( 443 ) ] exp [ - 0.013 ( λ - 443 ) ] ,
log chl = 0.053 - 1.71 log [ L w ( 443 ) / L w ( 550 ) ] .
R 0 = C ( μ 0 ) b b / a T = E u ( 0 ) / E d ( 0 ) ,
E u ( 0 ) = E d ( 0 ) [ C ( μ 0 ) b b / α T ] , E u ( 0 ) 443 E u ( 0 ) 550 = [ E d ( 0 ) 443 E d ( 0 ) 550 ] ( b b 443 b b 550 ) ( a T 550 a T 443 ) .
L u ( 0 ) 443 L u ( 0 ) 550 = [ E d ( 0 ) 443 E d ( 0 ) 550 ] ( b 443 b 550 ) ( a T 550 a T 443 ) .
b ( λ ) = b w ( λ ) + 0.3 ( 550 / λ ) chl 0.62 ,
L u 443 L u 550 = 0.94 ( 0.3771 0.3012 ) × ( 0.0638 + 0.0095 + 0.0068 G D 0.0145 + 0.0274 + 0.0274 G D ) , 1.074 = 1.1769 ( 0.0733 + 0.0068 G D 0.0419 + 0.0274 G D ) ,

Metrics