Abstract

A new calibration technique for continuous-wave Doppler lidars that uses an aerosol scattering target has been developed. Calibrations with both single- and many-particle scattering were performed at the same lidar operating conditions as in atmospheric measurements. The calibrating targets, simulating atmospheric aerosols, were laboratory-generated spherical silicone oil droplets with known complex refractive indices and sizes, hence with known single-particle backscatter cross sections as obtained from Mie theory. Measurements of lidar efficiency with the conventional hard target calibration method were consistently higher by a factor of ~2 than measurements with the aerosol calibration technique. This result may have important implications for lidar backscatter estimates both for aerosol modeling efforts and for optimal design of future lidar systems. The aerosol calibration method provides a validation of basic lidar theory for particle scattering for coherent detection.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
    [CrossRef]
  2. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [CrossRef] [PubMed]
  3. J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
    [CrossRef]
  4. J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
    [CrossRef]
  5. D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
    [CrossRef]
  6. D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
    [CrossRef]
  7. J. L. Gras, W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989).
    [CrossRef] [PubMed]
  8. J. M. Vaughan, R. D. Callan, D. A. Bowdle, J. Rothermel, “Spectral analysis, digital integration and measurement of low backscatter in coherent laser radar,” Appl. Opt. 28, 3008–3014 (1989).
    [CrossRef] [PubMed]
  9. J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
    [CrossRef] [PubMed]
  10. R. Foord, R. Jones, J. M. Vaughan, D. V. Willetts, “Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems,” Appl. Opt. 22, 3787–3795 (1983).
    [CrossRef] [PubMed]
  11. W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).
  12. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol backscattering profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
    [CrossRef] [PubMed]
  13. R. Anderson, J. W. Bilbro, “Calibration of the reflectance of hard targets for a coherent Doppler lidar,” Appl. Opt. 27, 856–861 (1988).
    [CrossRef] [PubMed]
  14. M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “Calibration of coherent lidar targets,” Appl. Opt. 19, 2828–2832 (1980).
    [CrossRef] [PubMed]
  15. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
    [CrossRef]
  16. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics for coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
    [CrossRef] [PubMed]
  17. D. P. Walter, D. E. Cooper, J. E. van der Laan, E. R. Murray, “Carbon dioxide laser backscatter signatures from laboratory-generated dust,” Appl. Opt. 25, 2506–2513 (1986).
    [CrossRef] [PubMed]
  18. V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
    [CrossRef] [PubMed]
  19. G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  20. M. A. Jarzembski, V. Srivastava, “Development of a new lidar calibration technique for aerosol backscatter measurements,” in Center Director’s Discretionary Fund Annual Report (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 43–45 (1992), pp. 15–17.
  21. W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).
  22. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [CrossRef] [PubMed]
  23. M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1 μm solid-state pulsed laser radar for aerosol backscatter profiling,” NASA Contr. Rep. CR-4347 (NASA, Washington, D.C., 1991).
  24. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [CrossRef] [PubMed]
  25. M. Milham, Optical Constant Data Base, U.S. Army Chemical and Biological Defense Command, Edgewood Research Development Engineering Center, Aberdeen Proving Ground, Md. 21010 (Personal communication, 1992).
  26. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 10, pp. 187–203.
  27. M. J. Kavaya, “The JPL lidar target calibration facility,” in Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.
  28. D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).
  29. V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
    [CrossRef]
  30. W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]

1995 (3)

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (5)

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

1989 (2)

1988 (1)

1986 (2)

1983 (2)

R. Foord, R. Jones, J. M. Vaughan, D. V. Willetts, “Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems,” Appl. Opt. 22, 3787–3795 (1983).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

1982 (1)

1981 (1)

1980 (1)

1971 (1)

1908 (1)

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Anderson, J. R.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Anderson, R.

Atlas, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 10, pp. 187–203.

Bilbro, J. W.

R. Anderson, J. W. Bilbro, “Calibration of the reflectance of hard targets for a coherent Doppler lidar,” Appl. Opt. 27, 856–861 (1988).
[CrossRef] [PubMed]

J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Bowdle, D. A.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

J. M. Vaughan, R. D. Callan, D. A. Bowdle, J. Rothermel, “Spectral analysis, digital integration and measurement of low backscatter in coherent laser radar,” Appl. Opt. 28, 3008–3014 (1989).
[CrossRef] [PubMed]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Brown, D. W.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

Brown, R. A.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Callan, R. D.

Chambers, D. M.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

Clarke, A. D.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Cooper, D. E.

Cutten, D. R.

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

DiMarzio, C. A.

J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Duckworth, R.

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Fitzjarrald, D. E.

Flamant, P. H.

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Foord, R.

Frehlich, R. G.

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1 μm solid-state pulsed laser radar for aerosol backscatter profiling,” NASA Contr. Rep. CR-4347 (NASA, Washington, D.C., 1991).

Gras, J. L.

Hall, F. F.

Haner, D. A.

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Hardesty, R. M.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics for coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “Calibration of coherent lidar targets,” Appl. Opt. 19, 2828–2832 (1980).
[CrossRef] [PubMed]

Henderson, S. W.

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1 μm solid-state pulsed laser radar for aerosol backscatter profiling,” NASA Contr. Rep. CR-4347 (NASA, Washington, D.C., 1991).

Horrigan, F. A.

Jarzembski, M. A.

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

M. A. Jarzembski, V. Srivastava, “Development of a new lidar calibration technique for aerosol backscatter measurements,” in Center Director’s Discretionary Fund Annual Report (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 43–45 (1992), pp. 15–17.

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

Jeffreys, H. B.

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Johnson, S. C.

J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Jones, R.

Jones, W. D.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

J. L. Gras, W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989).
[CrossRef] [PubMed]

J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

Kavaya, M. J.

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1 μm solid-state pulsed laser radar for aerosol backscatter profiling,” NASA Contr. Rep. CR-4347 (NASA, Washington, D.C., 1991).

M. J. Kavaya, “The JPL lidar target calibration facility,” in Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.

Keeler, R. J.

Kennedy, L. Z.

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Krishnamurti, T. N.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Lawrence, T. R.

Lee, R. W.

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

McElroy, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Mie, G.

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Milham, M.

M. Milham, Optical Constant Data Base, U.S. Army Chemical and Biological Defense Command, Edgewood Research Development Engineering Center, Aberdeen Proving Ground, Md. 21010 (Personal communication, 1992).

Miller, T. L.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Molinari, J. E.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Murray, E. R.

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

Paegle, J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Patterson, E. M.

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

Post, M. J.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol backscattering profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
[CrossRef] [PubMed]

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics for coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “Calibration of coherent lidar targets,” Appl. Opt. 19, 2828–2832 (1980).
[CrossRef] [PubMed]

Pueschel, R. F.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Richter, R. A.

Robertson, P.

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Rothermel, J.

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
[CrossRef]

J. M. Vaughan, R. D. Callan, D. A. Bowdle, J. Rothermel, “Spectral analysis, digital integration and measurement of low backscatter in coherent laser radar,” Appl. Opt. 28, 3008–3014 (1989).
[CrossRef] [PubMed]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Sirvastava, V.

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

Sonnenschein, C. M.

Spinhirne, J. D.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Srivastava, V.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

M. A. Jarzembski, V. Srivastava, “Development of a new lidar calibration technique for aerosol backscatter measurements,” in Center Director’s Discretionary Fund Annual Report (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 43–45 (1992), pp. 15–17.

Tratt, D. M.

van der Laan, J. E.

Vaughan, J. M.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

J. M. Vaughan, R. D. Callan, D. A. Bowdle, J. Rothermel, “Spectral analysis, digital integration and measurement of low backscatter in coherent laser radar,” Appl. Opt. 28, 3008–3014 (1989).
[CrossRef] [PubMed]

R. Foord, R. Jones, J. M. Vaughan, D. V. Willetts, “Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems,” Appl. Opt. 22, 3787–3795 (1983).
[CrossRef] [PubMed]

Walter, D. P.

Willetts, D. V.

Woodfield, A. A.

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

Ann. Phys. (1)

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt. (15)

C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
[CrossRef] [PubMed]

M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol backscattering profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442–2446 (1982).
[CrossRef] [PubMed]

R. Anderson, J. W. Bilbro, “Calibration of the reflectance of hard targets for a coherent Doppler lidar,” Appl. Opt. 27, 856–861 (1988).
[CrossRef] [PubMed]

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, “Calibration of coherent lidar targets,” Appl. Opt. 19, 2828–2832 (1980).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 20, 2619–2628 (1983).
[CrossRef]

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics for coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
[CrossRef] [PubMed]

D. P. Walter, D. E. Cooper, J. E. van der Laan, E. R. Murray, “Carbon dioxide laser backscatter signatures from laboratory-generated dust,” Appl. Opt. 25, 2506–2513 (1986).
[CrossRef] [PubMed]

V. Srivastava, M. A. Jarzembski, D. A. Bowdle, “Comparison of calculated aerosol backscatter at 9.1- and 2.1-μm wavelengths,” Appl. Opt. 31, 1904–1906 (1992).
[CrossRef] [PubMed]

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 35, 2083–2095 (1995).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

J. L. Gras, W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989).
[CrossRef] [PubMed]

J. M. Vaughan, R. D. Callan, D. A. Bowdle, J. Rothermel, “Spectral analysis, digital integration and measurement of low backscatter in coherent laser radar,” Appl. Opt. 28, 3008–3014 (1989).
[CrossRef] [PubMed]

J. W. Bilbro, C. A. DiMarzio, D. E. Fitzjarrald, S. C. Johnson, W. D. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 3952–3960 (1986).
[CrossRef] [PubMed]

R. Foord, R. Jones, J. M. Vaughan, D. V. Willetts, “Precise comparison of experimental and theoretical SNRs in CO2 laser heterodyne systems,” Appl. Opt. 22, 3787–3795 (1983).
[CrossRef] [PubMed]

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

W. E. Baker, G. D. Emmitt, P. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, T. L. Miller, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Geophys. Res. Lett. (1)

V. Sirvastava, D. A. Bowdle, M. A. Jarzembski, J. Rothermel, D. M. Chambers, D. R. Cutten, “High resolution remote sensing of sulfate aerosols from CO2 lidar backscatter,” Geophys. Res. Lett. 22, 2373–2376 (1995).
[CrossRef]

J. Geophys. Res. (4)

J. Rothermel, D. A. Bowdle, J. M. Vaughan, D. W. Brown, A. A. Woodfield, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar meaazsurements. 1. Algorithm description,” J. Geophys. Res. 96, 5293–5298 (1991).
[CrossRef]

J. Rothermel, D. A. Bowdle, J. M. Vaughan, “Calculation of aerosol backscatter from airborne continuous wave focused CO2 Doppler lidar measurements. 2. Algorithm performance,” J. Geophys. Res. 96, 5299–5305 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high plans. 1. Lidar intercomparison,” J. Geophys. Res. 96, 5327–5335 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, M. J. Post, “Aerosol backscatter measurments at 10.6 micrometers with airborne and ground-based CO2 Doppler lidars over the Colorado high planes. 2. Backscatter structure,” J. Geophys. Res. 96, 5337–5344 (1991).
[CrossRef]

Other (8)

W. D. Jones, J. W. Bilbro, S. C. Johnson, H. B. Jeffreys, L. Z. Kennedy, R. W. Lee, C. A. DiMarzio, “Design and calibration of a coherent lidar for measurement of atmospheric backscatter,” in Physics and Technology of Coherent, Infrared Radar I, R. C. Harney, ed., Proc. SPIE. 300, 66–69 (1982).

M. J. Kavaya, S. W. Henderson, R. G. Frehlich, “Theory of CW lidar aerosol backscatter measurements and development of a 2.1 μm solid-state pulsed laser radar for aerosol backscatter profiling,” NASA Contr. Rep. CR-4347 (NASA, Washington, D.C., 1991).

M. A. Jarzembski, V. Srivastava, “Development of a new lidar calibration technique for aerosol backscatter measurements,” in Center Director’s Discretionary Fund Annual Report (NASA Marshall Space Flight Center, Huntsville, Ala., 1991), pp. 43–45 (1992), pp. 15–17.

W. D. Jones, V. Srivastava, E. M. Patterson, R. Duckworth, M. A. Jarzembski, “Calibration of a continuous-wave (CW) focused CO2 lidar for single particle mode (SPM) backscatter measurements,” in 5th Conference on Coherent Laser Radar: Technology and Applications, J. W. Bilbro, C. Werner, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1181, 215 (1989).

M. Milham, Optical Constant Data Base, U.S. Army Chemical and Biological Defense Command, Edgewood Research Development Engineering Center, Aberdeen Proving Ground, Md. 21010 (Personal communication, 1992).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 10, pp. 187–203.

M. J. Kavaya, “The JPL lidar target calibration facility,” in Third Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1985), p. II.1.

D. R. Cutten, R. F. Pueschel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothermel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric backscatter over the Pacific Ocean,” J. Geophys. Res. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement for the SPM and the many-particle VM calibrations of CW Doppler lidar with laboratory-generated aerosols. VOAG, vibrating orifice aerosol generator.

Fig. 2
Fig. 2

Time scan of signal pulses from SA of backscattered signal from 13.1-μm-diameter silicone oil droplets traversing the 9.1-μm lidar beam focus at θ = 45° at f D = 2.71 MHz.

Fig. 3
Fig. 3

Measured backscattered SNR for single droplets as a function of droplet diameter D compared with the calculated single-particle backscatter cross section σ(π) from Mie theory. Scale offset is proportional to the lidar calibration factor and ηSPM ~ 0.22 ± 0.01 at high lidar output power, P ~ 4.7 W.

Fig. 4
Fig. 4

Time-resolved signal pulse measurements with high-speed transient digitizing LeCroy oscilloscope from (a) single silicone oil droplets representing the SPM case, (b) more than one droplet representing the VM case, (c) low-probability case of an interference pattern from two closely spaced droplets, (d) sandpaper hard target (HTSND), (e) flame-sprayed aluminum hard target (HTFSA), and (f) atmospheric drizzle. (a)–(e) measurements are at focus F = 9.53 m, (f) atmospheric drizzle is at F ~ 20 m.

Fig. 5
Fig. 5

Pulse profile of the maximum signal S for a single 13.1-μm-diameter silicone oil droplet at the lidar beam focus as meaured by (a) SA and (b) the LeCroy oscilloscope. The signal S calculated with Eq. (13) and lidar theory Eq. (16) is also shown.

Fig. 6
Fig. 6

Measured SNR as function of range L of backscattered signal at λ = 9.1 μm for (a) SPM with a single silicone oil droplet (D = 21.1, 13.1, and 11.8 μm, with σ given in m2 sr−1), (b) VM with many silicone oil droplets (D ~ 14.2 μm), and (c) HT with sandpaper (SND) and flame-sprayed aluminum (FSA). A comparison with lidar theory is shown by the various curves fitted to the data. Values for η and χ2 for each method are listed.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

β ( π ) = ( B K P ) SNR ATM ,
K = { η λ h ν [ π 2 + tan - 1 ( π R 2 λ F ) ] } - 1 ,
SNR SPM = 4 η P π 2 R 4 σ ( π ) B h ν λ 2 L 4 Z 2 exp [ - 4 ( π R r λ L ) 2 Z - 1 ] ,
Z = [ 1 + ( π R 2 λ L ) 2 ( 1 - L F ) 2 ] .
SNR SPM , max , L = 4 η P π 2 R 4 σ ( π ) B h ν λ 2 L 4 Z 2 ,
SNR SPM , max , F = 4 η P π 2 R 4 σ ( π ) B h ν λ 2 F 4 .
SNR VM , L = η P π R 4 σ ( π ) ρ B h ν 0 d L L 2 Z ,
β ( π ) = σ ( π ) ρ .
SNR VM , L = η P σ ( π ) ρ B h ν × { tan - 1 [ λ L 2 π R 2 - π R 2 λ F ( 1 - L 2 F ) ] - tan - 1 [ λ L 1 π R 2 - π R 2 λ F ( 1 - L 1 F ) ] } .
SNR HT , L = η P π R 2 ρ * B h ν L 2 Z ,
ρ * = β ( π ) d L = σ ( π ) ρ d L = σ ( π ) N o .
D = ( 6 C Q π f ) 1 / 3 .
U = λ f D 2 cos θ .
SNR ( dB ) = S ( dBm ) - N ( dBm ) .
SNR SPM , F ( r ) = 4 η P π 2 R 4 σ ( π ) B h ν λ 2 F 2 exp [ - 4 ( π R r λ L ) 2 ] .
x = U t sin θ .
SNR SPM ( t ) = 4 η P π 2 R 4 σ ( π ) B h ν λ 2 F 4 exp [ - 4 ( π R U t sin θ λ F ) 2 ] .

Metrics