Abstract

We emphasize two points: (1) the properties and mechanisms of very low-fluence ablation of copper surfaces and (2) the sensitivity and selectivity of resonant laser ablation (RLA). We present results for ablation of bulk copper and copper thin films; spot-size effects; the effects of surface-sample preparation and beam polarization; and an accurate measurement of material removal rates, typically ≤10−3 Å at 35 mJ/cm2. Velocity distributions were Maxwellian, with peak velocities ≈1–2 × 105 cm/s. In addition, we discuss the production of diffractionlike surface features, and the probable participation of nonthermal desorption mechanisms. RLA is shown to be a sensitive and useful diagnostic for studies of low-fluence laser–material interactions.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Kevan, “Electronic coherence length following pulsed-laser annealing of copper(001),” Phys. Rev. B 31, 3343–3347 (1985).
    [Crossref]
  2. M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
    [Crossref]
  3. W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
    [Crossref]
  4. P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
    [Crossref]
  5. V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
    [Crossref]
  6. R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).
  7. R. Kelly, “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047–5056 (1990).
    [Crossref]
  8. J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
    [Crossref]
  9. H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993).
    [Crossref] [PubMed]
  10. R. W. Dreyfus, “Cu°, Cu+ and Cu2 from excimer-ablated copper,” J. Appl. Phys. 69, 1721–1729 (1991).
    [Crossref]
  11. R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986).
    [Crossref]
  12. A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
    [Crossref]
  13. J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
    [Crossref]
  14. K. L. Saenger, “Time-resolved optical emission during laser ablation of Cu, CuO, and high-Tc superconductors: Bi1.7Sr1.3Ca2Cu3 Ox and γBa1.7Cu2.7Oy,” J. Appl. Phys. 69, 4435–4440 (1989).
    [Crossref]
  15. D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994).
    [Crossref]
  16. T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
    [Crossref]
  17. D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
    [Crossref]
  18. G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
    [Crossref]
  19. K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
    [Crossref]
  20. C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
    [Crossref]
  21. L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
    [Crossref]
  22. L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
    [Crossref]
  23. G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994).
    [Crossref]
  24. G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
    [Crossref]
  25. T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
    [Crossref]
  26. H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989).
    [Crossref]
  27. F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
    [Crossref]
  28. S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
    [Crossref]
  29. R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991).
    [Crossref]
  30. W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955).
    [Crossref]
  31. R. Stein, “Space and velocity focusing in time-of-flight mass spectrometers,” Int. J. Mass Spectrom. Ion Phys. 14, 205–218 (1974).
    [Crossref]
  32. R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
    [Crossref]
  33. E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
    [Crossref] [PubMed]
  34. C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983).
    [Crossref]
  35. R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
    [Crossref]
  36. B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
    [Crossref]
  37. G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [Crossref]
  38. T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
    [Crossref]
  39. D. J. Ehrlich, J. Y. Tsac, eds., Laser Microfabrication: Thin Film Processing and Lithography (Academic, New York, 1989).
  40. C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
    [Crossref]
  41. E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
    [Crossref]
  42. J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).
  43. N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
    [Crossref]
  44. T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976).
    [Crossref]
  45. R. H. Ritchie, “Surface plasmons in solids,” Surface Sci. 34, 1–19 (1973).
    [Crossref]
  46. T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
    [Crossref]
  47. X.-Y. Zhu, “Surface photochemistry,” Ann. Rev. Phys. Chem. 45, 113–144 (1994).
    [Crossref]
  48. P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981).
    [Crossref]
  49. M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993).
    [Crossref]
  50. S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991).
    [Crossref]
  51. X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
    [Crossref]
  52. X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991).
    [Crossref]
  53. W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
    [Crossref]
  54. R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990).
    [Crossref]
  55. M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987).
    [Crossref]
  56. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 161–172 (1965).
    [Crossref]
  57. A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986).
    [Crossref]
  58. J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
    [Crossref]
  59. J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
    [Crossref]
  60. J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
    [Crossref]
  61. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).
  62. A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

1995 (1)

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

1994 (7)

G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994).
[Crossref]

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[Crossref]

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994).
[Crossref]

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

X.-Y. Zhu, “Surface photochemistry,” Ann. Rev. Phys. Chem. 45, 113–144 (1994).
[Crossref]

1993 (6)

T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
[Crossref]

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993).
[Crossref]

W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
[Crossref]

H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993).
[Crossref] [PubMed]

1992 (6)

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[Crossref]

G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
[Crossref]

K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
[Crossref]

M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
[Crossref]

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

1991 (9)

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991).
[Crossref]

V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
[Crossref]

D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
[Crossref]

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

R. W. Dreyfus, “Cu°, Cu+ and Cu2 from excimer-ablated copper,” J. Appl. Phys. 69, 1721–1729 (1991).
[Crossref]

S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991).
[Crossref]

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991).
[Crossref]

1990 (3)

R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

R. Kelly, “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047–5056 (1990).
[Crossref]

1989 (2)

K. L. Saenger, “Time-resolved optical emission during laser ablation of Cu, CuO, and high-Tc superconductors: Bi1.7Sr1.3Ca2Cu3 Ox and γBa1.7Cu2.7Oy,” J. Appl. Phys. 69, 4435–4440 (1989).
[Crossref]

H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989).
[Crossref]

1988 (2)

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).

1987 (6)

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
[Crossref]

M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987).
[Crossref]

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
[Crossref] [PubMed]

1986 (2)

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986).
[Crossref]

R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986).
[Crossref]

1985 (3)

S. D. Kevan, “Electronic coherence length following pulsed-laser annealing of copper(001),” Phys. Rev. B 31, 3343–3347 (1985).
[Crossref]

R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
[Crossref]

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

1984 (1)

S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
[Crossref]

1983 (4)

C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
[Crossref]

1981 (1)

P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981).
[Crossref]

1979 (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

1976 (1)

T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976).
[Crossref]

1974 (1)

R. Stein, “Space and velocity focusing in time-of-flight mass spectrometers,” Int. J. Mass Spectrom. Ion Phys. 14, 205–218 (1974).
[Crossref]

1973 (1)

R. H. Ritchie, “Surface plasmons in solids,” Surface Sci. 34, 1–19 (1973).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 161–172 (1965).
[Crossref]

1955 (1)

W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955).
[Crossref]

Alexander, D. R.

G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
[Crossref]

Allen, T. M.

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

Anderson, J. E.

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[Crossref]

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
[Crossref] [PubMed]

Apel, E. C.

Apell, S. P.

R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990).
[Crossref]

Baller, T. S.

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

Barthe, M. F.

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

Barton, J. P.

G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 161–172 (1965).
[Crossref]

Borthwick, I. S.

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

Borthwick, J. S.

K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
[Crossref]

Braunstein, R.

P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981).
[Crossref]

Brongersma, S. H.

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

Burns, R. P.

D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
[Crossref]

Clark, A.

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Colavita, E.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Compton, R. N.

M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993).
[Crossref]

De Zwart, S. T.

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

Debrun, J. L.

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

Dieleman, J.

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

Dielemen, J.

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

Downey, S. W.

S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
[Crossref]

Dressler, R. A.

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

Dreyfus, R. W.

R. W. Dreyfus, “Cu°, Cu+ and Cu2 from excimer-ablated copper,” J. Appl. Phys. 69, 1721–1729 (1991).
[Crossref]

R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).

Driel, H. M. v.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
[Crossref]

Dubreuil, B.

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

Eiden, G. C.

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[Crossref]

G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994).
[Crossref]

Eliezer, S.

V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
[Crossref]

Engleman, R. J.

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

Ertl, G.

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

Estler, R. C.

R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991).
[Crossref]

E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
[Crossref] [PubMed]

Fauchet, P. M.

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986).
[Crossref]

Fearey, B. L.

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

Felder, P.

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

Fortov, V. E.

V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
[Crossref]

Gabriel, K. A.

D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
[Crossref]

Gamble, T. K.

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[Crossref]

Garrett, A. W.

A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

Garvey, J. F.

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

Gilbert, T.

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

Goetz, T.

T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
[Crossref]

Haglund, R. F. J.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Hannot, R.

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

Hasselbrink, E.

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

Hemberger, P. H.

A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

Herminghaus, S.

S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991).
[Crossref]

Hoheisel, W.

W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
[Crossref]

Holtmeier, G. M.

G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
[Crossref]

Huber, J. R.

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Hussia, I.

R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986).
[Crossref]

Jennings, R.

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Keller, R. A.

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

Kelly, P. B.

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

Kelly, R.

R. Kelly, “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047–5056 (1990).
[Crossref]

Kelly, R. W.

R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).

Kevan, S. D.

S. D. Kevan, “Electronic coherence length following pulsed-laser annealing of copper(001),” Phys. Rev. B 31, 3343–3347 (1985).
[Crossref]

Kokkinakis, T.

T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976).
[Crossref]

Kools, J. C. S.

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

Kostin, V. V.

V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
[Crossref]

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Krier, G.

F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
[Crossref]

Kurz, H.

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

Land, A. P.

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Ledingham, K. W. D.

K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
[Crossref]

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Leiderer, P.

S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991).
[Crossref]

Lyktey, M. Y. M.

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

Margaritondo, G.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Marsh, J. H.

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Marshall, A.

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Matthias, E.

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

McCombes, P. T.

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

McLaren, I. H.

W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955).
[Crossref]

McLean, C. J.

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Miller, C. M.

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
[Crossref] [PubMed]

S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
[Crossref]

C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983).
[Crossref]

Monreal, R.

R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990).
[Crossref]

Muller, J. F.

F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
[Crossref]

Murad, E.

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

Nielsen, H. B.

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

Nogar, N. S.

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[Crossref]

G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994).
[Crossref]

R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991).
[Crossref]

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

E. C. Apel, J. E. Anderson, R. C. Estler, N. S. Nogar, C. M. Miller, “Use of two-photon excitation in resonance ionization mass spectrometry,” Appl. Opt. 26, 1045–1050 (1987).
[Crossref] [PubMed]

S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
[Crossref]

C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983).
[Crossref]

A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

Opsal, R. B.

R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
[Crossref]

Owens, K. G.

R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
[Crossref]

Paisner, J. A.

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

Pang, H. M.

H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989).
[Crossref]

Papavassiliou, G. C.

T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976).
[Crossref]

Payne, M. G.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Pierce, D. E.

D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
[Crossref]

Prasad, P. N.

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

Reif, J.

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

Reilly, J. P.

R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
[Crossref]

Riedel, R.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Surface plasmons in solids,” Surface Sci. 34, 1–19 (1973).
[Crossref]

Robusto, P. F.

P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981).
[Crossref]

Rosen, A.

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

Rostami, A. A.

M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
[Crossref]

Rowe, M. W.

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

Russo, R. E.

M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
[Crossref]

Saenger, K. L.

K. L. Saenger, “Time-resolved optical emission during laser ablation of Cu, CuO, and high-Tc superconductors: Bi1.7Sr1.3Ca2Cu3 Ox and γBa1.7Cu2.7Oy,” J. Appl. Phys. 69, 4435–4440 (1989).
[Crossref]

Salter, R. H.

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

Sappey, A. D.

D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994).
[Crossref]

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[Crossref]

Schütze, M.

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

Shannon, M. A.

M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
[Crossref]

Shea, M. J.

M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993).
[Crossref]

Sibold, D.

H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993).
[Crossref] [PubMed]

Siegman, A. E.

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986).
[Crossref]

Singhal, R. P.

K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
[Crossref]

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
[Crossref]

Stein, R.

R. Stein, “Space and velocity focusing in time-of-flight mass spectrometers,” Int. J. Mass Spectrom. Ion Phys. 14, 205–218 (1974).
[Crossref]

Stoffel, N. G.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Taglauer, E.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Thiem, T. L.

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

Timm, R.

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

Tolk, N. H.

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

Towrie, M.

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

Traeger, F.

T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
[Crossref]

W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
[Crossref]

M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987).
[Crossref]

Trappe, C.

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

Urbassek, H. M.

H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993).
[Crossref] [PubMed]

Van de Riet, E.

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

Verdun, F. R.

F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
[Crossref]

Viswanathan, R.

R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986).
[Crossref]

Vollmer, M.

T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
[Crossref]

W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
[Crossref]

M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987).
[Crossref]

Wang, L.

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

Watson, L. R.

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

Westin, E.

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

White, J. M.

X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991).
[Crossref]

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

Wijekoon, W. M. K. P.

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

Wiley, W. W.

W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955).
[Crossref]

Willmott, P. R.

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

Wolf, M.

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

Yeung, E. S.

H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
[Crossref]

Young, J. P.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Zerkle, D. K.

D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994).
[Crossref]

Zhu, X. Y.

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991).
[Crossref]

Zhu, X.-Y.

X.-Y. Zhu, “Surface photochemistry,” Ann. Rev. Phys. Chem. 45, 113–144 (1994).
[Crossref]

Anal. Chem. (5)

H. M. Pang, E. S. Yeung, “Laser-enhanced ionization as a diagnostic tool in laser-generated plumes,” Anal. Chem. 61, 2546–2551 (1989).
[Crossref]

F. R. Verdun, G. Krier, J. F. Muller, “Increased sensitivity in laser microprobe mass analysis by using resonant two-photon ionization processes,” Anal. Chem. 59, 1383–1387 (1987).
[Crossref]

R. B. Opsal, K. G. Owens, J. P. Reilly, “Resolution in the linear time-of-flight mass spectrometer,” Anal. Chem. 57, 1884–1889 (1985).
[Crossref]

C. M. Miller, N. S. Nogar, “Calculation of ion yields in atomic multiphoton ionization spectroscopy,” Anal. Chem. 55, 481–488 (1983).
[Crossref]

B. L. Fearey, C. M. Miller, M. W. Rowe, J. E. Anderson, N. S. Nogar, “Pulsed laser resonance ionization mass spectrometry for elementally selective detection of lead and bismuth mixtures,” Anal. Chem. 60, 1786–1791 (1988).
[Crossref]

Ann. Rev. Phys. Chem. (1)

X.-Y. Zhu, “Surface photochemistry,” Ann. Rev. Phys. Chem. 45, 113–144 (1994).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

T. M. Allen, P. B. Kelly, J. E. Anderson, N. S. Nogar, “Copper thin film analysis by resonant laser ablation,” Appl. Phys. A 61, 221–225 (1995).
[Crossref]

T. Goetz, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light of different polarization,” Appl. Phys. A 57, 101–104 (1993).
[Crossref]

Appl. Phys. B (3)

L. Wang, I. S. Borthwick, R. Jennings, P. T. McCombes, K. W. D. Ledingham, R. P. Singhal, C. J. McLean, “Observations and analysis of resonant laser ablation of GaAs,” Appl. Phys. B 53, 34–38 (1991).
[Crossref]

L. Wang, K. W. D. Ledingham, C. J. McLean, R. P. Singhal, “Laser-induced collisional processes in resonant laser ablation of GaAs,” Appl. Phys. B 54, 71–75 (1992).
[Crossref]

J. C. S. Kools, S. H. Brongersma, E. Van de Riet, J. Dielemen, “Concentrations and velocity distributions of positive ions in laser ablation of copper,” Appl. Phys. B 53, 125–130 (1991).
[Crossref]

Appl. Phys. Lett. (1)

S. Herminghaus, P. Leiderer, “Nanosecond time-resolved study of pulsed laser ablation in the monolayer regime,” Appl. Phys. Lett. 58, 352–354 (1991).
[Crossref]

Chem. Phys. Lett. (2)

X. Y. Zhu, J. M. White, M. Wolf, E. Hasselbrink, G. Ertl, “Polarization probe of excitation mechanisms in surface photochemistry,” Chem. Phys. Lett. 176, 459–466 (1991).
[Crossref]

G. C. Eiden, N. S. Nogar, “The two-photon spectrum of iron and silicon detected by resonant laser ablation,” Chem. Phys. Lett. 226, 509–516 (1994).
[Crossref]

Fresenius Z. Anal. Chem. (1)

C. Trappe, M. Schütze, R. Hannot, H. Kurz, “Use of ultrashort laser pulses for desorption from semiconductor surfaces and nonresonant post-ionization of sub-monolayers,” Fresenius Z. Anal. Chem. 346, 368–373 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-32, 1384–1403 (1986).
[Crossref]

Int. J. Mass Spectrom. Ion Phys. (3)

S. W. Downey, N. S. Nogar, C. M. Miller, “Resonance ionization mass spectrometry of technetium,” Int. J. Mass Spectrom. Ion Phys. 61, 337–345 (1984).
[Crossref]

R. Stein, “Space and velocity focusing in time-of-flight mass spectrometers,” Int. J. Mass Spectrom. Ion Phys. 14, 205–218 (1974).
[Crossref]

C. J. McLean, J. H. Marsh, A. P. Land, A. Clark, R. Jennings, K. W. D. Ledingham, P. T. McCombes, A. Marshall, R. P. Singhal, M. Towrie, “Resonant laser ablation (RLA),” Int. J. Mass Spectrom. Ion Phys. 96, R1–R7 (1990).
[Crossref]

J. Appl. Phys. (12)

A. D. Sappey, T. K. Gamble, “Planar laser-induced fluorescence imaging of copper atom and dimers in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107 (1992).
[Crossref]

R. C. Estler, N. S. Nogar, “Ablation of high temperature superconductor studied by resonance ionization mass spectrometry (RIMS),” J. Appl. Phys. 69, 1654–1659 (1991).
[Crossref]

K. L. Saenger, “Time-resolved optical emission during laser ablation of Cu, CuO, and high-Tc superconductors: Bi1.7Sr1.3Ca2Cu3 Ox and γBa1.7Cu2.7Oy,” J. Appl. Phys. 69, 4435–4440 (1989).
[Crossref]

D. K. Zerkle, A. D. Sappey, “Limitations in the application of hook spectroscopy for density measurements in high-density-gradient media,” J. Appl. Phys. 75, 7576–7578 (1994).
[Crossref]

R. W. Dreyfus, “Cu°, Cu+ and Cu2 from excimer-ablated copper,” J. Appl. Phys. 69, 1721–1729 (1991).
[Crossref]

G. M. Holtmeier, D. R. Alexander, J. P. Barton, “High-intensity ultraviolet laser interaction with a metallic filament,” J. Appl. Phys. 71, 557–563 (1992).
[Crossref]

M. A. Shannon, A. A. Rostami, R. E. Russo, “Photothermal deflection measurements for monitoring heat transfer during modulated laser heating of solids,” J. Appl. Phys. 71, 53–63 (1992).
[Crossref]

P. R. Willmott, R. Timm, P. Felder, J. R. Huber, “Growth of CuO films by pulsed laser deposition in conjunction with a pulsed oxidation source,” J. Appl. Phys. 76, 2657–2661 (1994).
[Crossref]

V. E. Fortov, V. V. Kostin, S. Eliezer, “Spallation of metals under laser irradiation,” J. Appl. Phys. 70, 4524–4531 (1991).
[Crossref]

J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman, “Gas flow dynamics in laser ablation deposition,” J. Appl. Phys. 71, 4547–4556 (1992).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 161–172 (1965).
[Crossref]

T. Gilbert, B. Dubreuil, M. F. Barthe, J. L. Debrun, “Investigation of laser sputtering of iron at low fluence using resonance ionization mass spectrometry,” J. Appl. Phys. 74, 3506–3513 (1993).
[Crossref]

J. Chem. Phys. (2)

X. Y. Zhu, J. M. White, “The role of direct and substrate excitation in ultraviolet photolysis of phosgene on platinum(111),” J. Chem. Phys. 94, 1555–1563 (1991).
[Crossref]

R. Kelly, “On the dual role of the Knudsen layer and unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047–5056 (1990).
[Crossref]

J. Opt. Soc. B (1)

R. Viswanathan, I. Hussia, “Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum,” J. Opt. Soc. B 3, 796–800 (1986).
[Crossref]

J. Phys. Chem. (1)

T. L. Thiem, L. R. Watson, R. A. Dressler, R. H. Salter, E. Murad, “Fast metal-atom generation by laser vaporization of Cu, Zn, and Ni compounds,” J. Phys. Chem. 98, 11931–11941 (1994).
[Crossref]

J. Phys. Colloq. (1)

J. Reif, H. B. Nielsen, E. Matthias, E. Westin, A. Rosen, “Resonant multiphoton processes in laser-induced desorption,” J. Phys. Colloq. 7, 737–739 (1987).

J. Phys. D (1)

W. M. K. P. Wijekoon, M. Y. M. Lyktey, P. N. Prasad, J. F. Garvey, “The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies,” J. Phys. D 27, 1548–1555 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

E. Matthias, H. B. Nielsen, J. Reif, A. Rosen, E. Westin, “Multiphoton-induced desorption of positive ions from barium fluoride,” J. Vac. Sci. Technol. B 5, 1415–1422 (1987).
[Crossref]

Microchem. J. (1)

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[Crossref]

Nucl. Instrum. Methods (1)

R. W. Kelly, R. W. Dreyfus, “On the effect of Knudsen-layer formation on studies of vaporization, sputtering and desorption,” Nucl. Instrum. Methods 32, 321–348 (1988).

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

R. J. Engleman, R. A. Keller, C. M. Miller, N. S. Nogar, J. A. Paisner, “Selective photoionization of copper-64 in the presence of copper-63 and copper-65,” Nucl. Instrum. Methods Phys. Res. Sect. B 26, 448–451 (1987).
[Crossref]

Phys. Rev. B (8)

S. D. Kevan, “Electronic coherence length following pulsed-laser annealing of copper(001),” Phys. Rev. B 31, 3343–3347 (1985).
[Crossref]

W. Hoheisel, M. Vollmer, F. Traeger, “Desorption of metal atoms with laser light: mechanistic studies,” Phys. Rev. B 48, 17463–17476 (1993).
[Crossref]

R. Monreal, S. P. Apell, “Electromagnetic-field-enhanced desorption of atoms,” Phys. Rev. B 41, 7852–7855 (1990).
[Crossref]

N. G. Stoffel, R. Riedel, E. Colavita, G. Margaritondo, R. F. J. Haglund, E. Taglauer, N. H. Tolk, “Photon-stimulated desorption of neutral sodium from alkali halides observed by laser-induced fluorescence,” Phys. Rev. B 32, 6805–6808 (1985).
[Crossref]

M. J. Shea, R. N. Compton, “Surface-plasmon ejection of silver(1+) ions from laser irradiation of a roughened silver surface,” Phys. Rev. B 47, 9967–9970 (1993).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. v. Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
[Crossref]

J. F. Young, J. S. Preston, H. M. v. Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B 27, 1155–1172 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. v. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1983).
[Crossref]

Phys. Rev. Lett. (1)

H. M. Urbassek, D. Sibold, “Gas-phase segregation effects in pulsed laser deposition from binary targets,” Phys. Rev. Lett. 70, 1886–1889 (1993).
[Crossref] [PubMed]

Phys. Status Solidi B (2)

T. Kokkinakis, G. C. Papavassiliou, “Surface plasmons in small copper particles,” Phys. Status Solidi B 77, K49–K51 (1976).
[Crossref]

P. F. Robusto, R. Braunstein, “Optical measurements of the surface plasmon of copper,” Phys. Status Solidi B 107, 443–449 (1981).
[Crossref]

Rev. Mod. Phys. (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[Crossref]

Rev. Sci. Instrum. (1)

W. W. Wiley, I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26, 1150–1155 (1955).
[Crossref]

Surf. Interface Anal. (1)

K. W. D. Ledingham, J. S. Borthwick, R. P. Singhal, “The characteristics of resonant laser ablation for surface analysis,” Surf. Interface Anal. 18, 576–578 (1992).
[Crossref]

Surf. Sci. (1)

M. Vollmer, F. Traeger, “Analysis of fractional order thermal desorption,” Surf. Sci. 187, 445–462 (1987).
[Crossref]

Surface Sci. (1)

R. H. Ritchie, “Surface plasmons in solids,” Surface Sci. 34, 1–19 (1973).
[Crossref]

Thin Solid Films (1)

D. E. Pierce, R. P. Burns, K. A. Gabriel, “Thermal desorption spectroscopy of palladium and copper on silica,” Thin Solid Films 206, 340–344 (1991).
[Crossref]

Other (3)

D. J. Ehrlich, J. Y. Tsac, eds., Laser Microfabrication: Thin Film Processing and Lithography (Academic, New York, 1989).

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).

A. W. Garrett, P. H. Hemberger, N. S. Nogar, “Resonant laser ablation in an ion trap mass spectrometer,” Spectrochim. Acta B (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the experimental apparatus for RLA studies of copper. PBSC’s, prism beam-steering columns; PD’s, photodiodes; VA, variable attenuator; A’s, attenuators; BS, beam splitter; SBC, Soleil–Babinet compensator; ToF M.S., time-of-flight mass spectrometer.

Fig. 2
Fig. 2

Beam shapes for the ablation laser used in most of this paper: (a) Contour plot of the focused beam; the solid lines are intensity increments of 50 μm. (b) Cross-sectional images of the beam taken at the focus. The solid curves in (b) represent a Gaussian fit to the data.

Fig. 3
Fig. 3

Schematic of the apparatus: (a) source region of the mass spectrometer for pump-probe experiments used to measure velocity distributions and (b) timing sequence used for these experiments.

Fig. 4
Fig. 4

Representative RLA mass spectra with the ablation laser tuned to the indicated wavelengths, in order to enhance the generation of the indicated elements. The transitions used for excitation are shown in Table 2.

Fig. 5
Fig. 5

TOF mass spectrum from a near-surface layer of a sample consisting of 100 ± 10 Å copper on Si(110).

Fig. 6
Fig. 6

Measurement of copper removal rates at very low fluence. (a) depicts the temporal evolution of the copper signal for irradiation of a copper thin film (100 Å). The decrease in signal with time is due to the removal of copper from within the laser footprint. (b) Time required to remove the copper layer completely as a function of laser-pulse energy. From these data it is possible to determine the removal rates for copper accurately: typically they are ≈100 fg/laser shot.

Fig. 7
Fig. 7

Scanning Auger image of copper from a copper-coated (20 ± 10 Å) Si(110) substrate when the Cu (920-eV) transition is used. In this image, lighter fields correspond to high copper signals, and darker fields are low copper signals. The central spot shows removal of the copper film and was produced by low-energy (7 μJ/pulse) irradiation of the surface for ≈30,000 shots. The two bright spots on the right-hand side of the figure are areas irradiated by a small number of shots (≤10) during alignment. They show greater copper signals because the surface impurity layer (carbon or oxygen) has been removed by the incidental irradiation.

Fig. 8
Fig. 8

Auger line scans of the laser-ablated spot when the Cu (920-eV) transition is used. The laser-fluence levels used to create this surface feature were ≤20 mJ/cm2 or an intensity ≤2 × 106 W/cm2. (a) Scan parallel to the long axis of the laser spot and roughly centered on the spot. The dip at the left-hand side of this figure corresponds to a pinhole in the copper film. (b) Scan parallel to the short axis of the laser spot. The apparent increase in copper at the edges of the ablation crater is likely due to depletion of the surface carbon or of the oxygen impurity by the laser pulses (see text).

Fig. 9
Fig. 9

(a) Photomicrograph of a laser-ablated spot. This image has been distorted to produce a square image so that the horizontal dimension is similar to that in (b). The actual ablated figure is ≈25 μm × 125 μm. (b) Optical intensity variation on a horizontal cut through the center of the spot. In this case, the interpeak spacing is 2–3 pixels ≈ 1.46 μm.

Fig. 10
Fig. 10

Polarization dependence for a variety of samples: (a) copper from a rough stainless-steel (C1154a) disk, (b) from a rough copper disk, (c) from a polished copper disk, and (d) from a copper thin film on Si(110). In each case, the dotted curve shows the intensity of the reflected laser beam, and the solid curve shows the RLA signal. The polarization is indicated in the uppermost trace and is the same for each data set.

Fig. 11
Fig. 11

Arrival time distributions for copper atoms desorbed from (a) a solid copper surface and (b) a copper thin film on Si(110). The symbols are experimental data points (each data point represents the average of 16 laser shots) obtained at two different distances from the surface. The solid curves are best fits of a Maxwellian half-distribution to the experimental data.

Fig. 12
Fig. 12

(a) Calculated temperature jump (one-dimensional model) for a 20-μJ laser pulse impinging upon a solid copper sample. (b) Calculated desorption yield (per laser pulse) for a given temperature. To convert the desorption yield to atoms cm−2, the yield per laser pulse can be divided by the laser-pulse area of 6 × 10−4 cm2.

Tables (3)

Tables Icon

Table 1 Representative Results for Laser Ablation of Coppera

Tables Icon

Table 2 Resonant Two-Photon Excitation Processes Used in Resonant Laser Ablation (Energies Given in cm−1)a

Tables Icon

Table 3 Velocity Distributions for Laser-Desorbed Copper Atoms

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( L , t ) = ( K / L 3 ) ( t m / t ) 4 exp [ - 2 ( t m / t ) 2 ] ,
S ( L , t ) = ( K / L 3 ) ( t m / t ) 4 exp [ - ( 2 / L 2 ) ( t m / t ) 2 ( L - v 0 t ) 2 ] ,
v p = ( 4 k T s / m ) 1 / 2 ,
Δ T E p / v ρ C p , Δ T ( 20 × 10 - 6 J ) / ( 8.22 × 10 - 10 cm 3 ) × ( 9 g / cm 3 ) ( 4 W / cm K ) = 660 K ,
rate = ( 6 × 10 23 ) ( 5.9 × 10 - 4 ) ( 25 × 10 - 9 / 64 ) × exp [ 8.63 - 0.5 log ( T ) - 16.98 × 10 3 / T ] ,
d N / d t = ( G eff ) ( a sur ) ( I 0 / h v ) F ,

Metrics